

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

1

Lecture IV: Training predictors, Part I

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

October, 2022

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

10

Optimization glossary

Change in notation!

Here, f is a function to be minimized, and x the variable in the domain of the function. In a
learning task, f will be replaced by an objective J like L̂logl and x by the parameters of the
predictor, e.g. w ,�, ✓,

The methods in this lecture belong to the class of unconstrained optimization methods.
Problem Find minx f (x) for x 2 Rd or x 2 D the domain of f . We assume that f is a twice
di↵erentiable function with continuous second derivatives.
Notation The gradient of f is the column vector

rf (x) =


@f

@xi
(x)

�
n

i=1

(11)

and the Hessian of f is the square symmetric matrix of second partial derivatives of f

r
2
f (x) =


@2

f

@xi xj
(x)

�n

i,j=1

(12)

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

12

Local and global minima

I A local minimum for f is point x⇤ for which

f (x⇤)  f (x) whenever ||x � x
⇤
|| < ✏

I A global minimum for f is point x⇤ for which

f (x⇤)  f (x) for all x in the domain of f

We say x
⇤ is a strict local/global minimum when the above inequalities are strict for

x 6= x
⇤.

I A minimum is isolated if it is the only local minimum in an ✏-ball around itself.
I A stationary point for f is a point x⇤ for which rf (x⇤) = 0.

Theorem
If f has continuous second derivative everywhere in D, and x

⇤
2 D is a point for which

rf (x⇤) = 0 and r
2
f (x⇤) � 0 (r

2
f (x⇤) > 0) then x

⇤
is a (nonsingular) local minimum for f .

In what follows, we will deal only with non-singular local minima. A non-singular local
minimum is strict and isolated.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

19

Not all f ’s are twice di↵erentiable
By default we will assume f is twice di↵erentiable and that its Hessian r

2
f is continuous and

strictly positive definite around x
⇤. But other, weaker, conditions on f also indicate an f that

is “easy” to minimize. Here are some of the most common ones.
I f is B-Lipschitz if there is B > 0 so that

|f (y)� f (x)|  B||y � x || for all x , y

A Lipschitz function, behaves “almost” like a di↵erentiable function with bounded
gradient.

I The problem minx f is a smooth minimization problem if f it is upper bounded by a
quadratic function around x

⇤, i.e. i↵ there exists M > 0 so that

f (x)� f (x⇤) 
1

2
M||x � x

⇤
||
2

on a neighborhood of x⇤. This property indicates that f , even though it may not be
di↵erentiable, behaves “almost like a quadratic”, in the sense that local quantities
(gradient, Hessian) are informative w.r.t the minimum. An example of a non-smooth
minimization problem is minx |x |. The gradient rf is ±1 everywhere but in 0, so it gives
us information on which side of x the minimum lies, but its size does not tell us how far
we are from x

⇤.
I A function f that is lower bounded by a quadratic function around x

⇤ is called strongly
convex (more about this later).

f (y)� f (x)�rf (x)T (y � x) �
1

2
m||x � y ||

2

If f is strongly convex, then the minimum x
⇤ is well localized.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

20

Examples from Machine Learning

I f (x) = |x | is 1-Lipschitz
I If rf exists and ||rf (x)||  B for all x , then f is B-Lipschitz
I A C

2 function (continuous Hessian everywhere on the domain) with r
2
f (x⇤) � 0 is both

strongly convex and smooth
I L̂01 the misclassification cost is piecewise constant. Hence, not di↵erentiable everywhere,

not strongly convex, but smooth. Very bad J to optimize, though.
I The LASSO cost function is not di↵erentiable everywhere, it is not smooth but strongly

convex. This is a very frequent in machine learning problems.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

15

How to evaluate an optimization method? [Optional]

I Does it converge to a minimum?

As we shall see, all the methods described here converge to a minimum, but some of the
require the function f to have additional “good” properties. A method which converges for
larger classes of f ’s is more robust.

I How fast?

Answer is usually in terms of rates of convergence
Let ek = x

k
� x

⇤ or ek = f (xk)� f (x⇤) denote the “error” at step k. Then, an algorithm has
a rate of convergence of order p if

||e
k+1

||  �(||ek ||)p for some 0 < � < 1 (14)

In the above, p > 0 but not necessarily an integer.
Most common cases are p = 1 (linear1) and p = 2 (quadratic). A rate of p < 1 is possible,
and relevant for machine learning (see Part II). Superlinear scales are desirable – and often
achievable.
Some modern machine learning algorithms have sublinear rates, e.g

||e
k
|| 

�

k
||e

0
|| (15)

This is considered a slow convergence rate in classical optimization. Exercise Why may we like this

rates in statistics/machine learning?

I Practical issues: Is it easy to implement or tune? Available software?

1The use of the term “linear” here is inconsistent with its use in e.g complexity theory. If an optimization algorithm is

linear, that means that the error decreases exponentially with k, as ||ek ||  �k ||e0||.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

16

Computational complexity – theory and practice

In optimization problems, there are various ways of expressing the computational complexity of
an algorithm:

I number of flops (floating point operations) per iteration, usually as a function of n the
dimension of the problem

I number of function or gradient evaluations per iteration
I number of iterations; this latter quantity is given implicitly, by the rate of convergence.
I memory requirements

I With the increased complexity and variation of computer systems, the above mentioned
number of operations is becoming obsolete. Algorithms are increasingly judged by other,
system-related qualities, like: type of memory access (do they access memory in blocks or
randomly), cache misses, etc. These criteria are beyond the scope of this course, but what
you need to remember is that the texbook properties on an algorithm alone do not always
predict its performance on the system you are going to run it. You may need to
experiment with parameters and with algorithms to determine which algorithm is better
suited for your data and system.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

17

What’s in a function evaluation?

In classical optimization, the computation of f (x) or rf (x) is considered one unit of
computation.
For machine learning, let us look inside the box. Take for example the LASSO objective
function

J(�) =
nX

i=1

(y i
� �T

xi)
2 + �||�||1.

We notice that

I J is a sum with n + 1 terms
I each x

i
2 Rd , � 2 Rd so each term takes O(n) operations (additions and multiplications)

to compute
I Total number of operations to compute J(�) once is O(nd)
I Do this exercise Exercise The gradient rJ is in Rd and is also a sum of n + 1 terms. How many

operations to compute it?

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

18

Transitory and asymptotic regimes

There are two regimes for each algorithm:

I the transitory, or approach regime, when x
k is far away from x

⇤

I the asymptotic regime, near x⇤ – most classic results are about this regime

The theoretical (and practical) behavior of optimization algorithms will strongly depend on the
properties of the function f to be optimized around its minimum x

⇤.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

21

Steepest (gradient) descent

I The steepest descent method follows the direction of the gradient.
I Rate of convergence: with line minimization or Armijo (see next slide), linear rate. For

other line search methods, including constant step size, the rate of convergence is no
larger.

I Ill-conditioning: The convergence coe�cient � of equation (14) can get very close to 1
(very slow convergence) if the Hessian is ill conditioned.

Let M,m denote respectively the largest and the smallest eigenvalue of r2
f (x⇤). By

continuity, we can assume that the Hessian around x
⇤ is approximately the same. If M >> m

then the function will have a “long, narrow valley” with an almost flat “bottom” around x
⇤,

oriented along the smallest eigenvector. The gradient will be almost perpendicular to the
valley, and the algorithm, even with the optimal line minimization, will advance very slowly.
Hence, many optimization methods (but not stochastic gradient) can be seen as “applying
some coordinate transformation” that will turn the elongated ellipses into circles, so that
steepest descent in this new coordinates can move rapidly towards the optimum. Equivalently,
having such a transformation (which is represented by the Hessian matrix), one can apply the
“inverse transformation” to the descent direction, which is precisely what the Newton-Raphson
method does.

