

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

1

Lecture IV: Training predictors, Part II

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

October, 2021

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

2

Stochastic gradient methods
Examples: Linear classification with hinge loss, Perceptron
Accelerated gradient

No gradient methods: Coordinate descent

Stopping descent algorithms

Reading HTF Ch.: –, Murphy Ch.: 8.5.2-3 Stochastic gradient descent For more advanced

treatment Nocedal and Wrigth.

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

3

Stochastic gradient descent (SGD) methods

[Optimization framework, minimize f over x]

SGD methods are the “cheap and slow [convergence]” methods which can however be very
useful. One should not confuse “theoretically slow” with “slow in practice” and on some
problems the former is true of the simpler methods but the latter is not. On other occasions,
these methods perform well because they make fewer assumptions about the smoothness of the
surface f (x).

I Typical algorithm: steepest descent methods with diminishing step size.
I Assumption: the gradient gk = rf (xk) is computed with some error, that has 0 mean

and bounded variance.
I This is the case for fitting of a model to data.

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

4

Stochastic gradient for Machine Learning: idea

[ML framework, minimize J or L̂ over parameters, (x, y) =data, f = predictor]

I Let Dn be an i.i.d sample of size n from an unknown distribution.
I Denote by L̂(✓) = � 1

n lnP(y1:n
|x1:n, ✓) the negative log-likelihood to be minimized.

I Because the sample is i.i.d., L̂(✓) = � 1
n

Pn
i=1 ln p(y

i
|xi , ✓). Since f is a sum, so will be

the gradient:

rL̂(✓) = �
1

n

nX

i=1

@p(y i |xi ,✓)
@✓

p(y i |xi , ✓)
(1)

I If n is large (good from the statistical point of view) then the computation of (1) linear in
n (very costly).

I The SGD idea is to set

dk =
@p(y i |xi ,✓)

@✓

p(y i |xi , ✓)
(2)

where (xi , y i) is randomly sampled from Dn.
I Let PX be the true data distribution and P̂X the empirical distribution induced by the

sample Dn. Note that the direction dk satisfies EP̂ [d
k] = rL̂.

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

5

[Optimization framework, minimize f over x]

This example points out that in Machine Learning

I the function f and its gradient rf are both expensive to evaluate, because they are are
sums over the potentially large sample size n

I therefore, we want to avoid not only the r2f computation, but also the rf computation
and even the line search which entails repeated evaluations of f

I on the other hand, evaluating a noisy version of the gradient is fast, because it involves
one (or a few) samples

Thus, SGD takes many imprecise steps, instead of few but very computationally demanding
precise steps. It remains to see if such a method can e↵ectively find a minimum.

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

6

Convergence of SGD

Theory It has been proved under various technical conditions1 that stochastic gradient
converges to the true optimum if

I the step sizes ⌘k satisfy

X

k

⌘k =1,
X

k

(⌘k)2 <1 (the latter implies ⌘k ! 0) (3)

I and the noise variance Var [dk] is bounded.

Practically ⌘k ’s should decrease like 1
k . Note however that typically in practice the decrease

needs to be very slow, almost constant e.g 1
b+k/c with b, c large numbers.

1These results are best known under the name of Robbins-Munro theory of stochastic approximation.

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

7

Variations and practicalities

I SGD with a subsample instead of single point (“old-fashioned” SGD). At each step k, take

a subsample D
0
⇢ D with size |D

0
| = n0 ⌧ n, compute dk as 1

n0
P

i2D0 rL(y i , ŷ i). D
0

must be a di↵erent subset at each time.
I n0 can be varied as the training progresses towards the optimum, from n0 small at the

start, to approach the optimum fast, to n0 large near the end, to reduce variance.
I When to use “modern” SGD and when to use “old-fashioned”? Rule of thumb:

I If you know that your function is �-strongly convex, then use the modern algorithm with a fixed
K derived from �.

I Otherwise, use old-fashioned.

I If the sample D is truly iid (if it is true e.g. that example i and i + 1 are independent)
then picking a random i can be replaced by chosing i sequentially

I On-line learning and streaming data Remarkably, SGD can naturally handle on-line

learning, i.e. situations where data come one by one, and are not stored but discarded,
after being used immediately to update the parameters.
In on-line learning, (xi , y i) ⇠ PXY , we would be optimizing the expected loss
L = EP [� ln p(Y |X , ✓)], and di would satify EP [di] = rL. Showing that the variance of
dk is bounded is no more di�cult (or easy than in the finite sample case).

I Stochastic gradient and analog techniques are widely used in machine learning: training of
neural networks, reinforcement learning (the TD-� and Q-learning procedures are
stochastic gradient methods), speedup of boosting.

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

8

Modern results
[ML framework, minimize J or L̂ over parameters, (x, y) =data, f = predictor]

I Handling constraints If there are constraints ✓ 2 A, we additionally assume that the
projection ⇧A✓ = argmin

✓02A
||✓ � ✓0|| can be computed e�ciently (e.g. ✓ ⌫ 0).

I State of the art algorithms are very simple

Stochastic Gradient Descent (SGD)
Input � �min

�
r

2f (x⇤)
�
, c > 1/2 a constant giving the step-size, [optional ↵ 2 (0, 1],

K=total number steps]
for k = 1, 2, . . .K

1. get dk :
1.1 sample a point xi at random from D OR pick xi sequentially from a random permutation of D
1.2 compute dk = rf✓(x

i)

2. update ✓:

✓k+1
 ✓k �

c

�k
dk (4)

3. if k > (1� ↵)K accumulate ✓̄ ! ✓̄ + ✓k

Average

✓̄
✓̄

↵K
(5)

Output ✓̄ (or optionally ✓K)

Remarks

I steps proportional to 1/k and averages the last ↵ fraction of steps.
I Empirically it was observed that no averaging, i.e. ✓K itself, has also good convergence

properties, but (as expected) larger variance than ✓̄.

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

9

Example: Linear classification with hinge loss

[ML framework, minimize J or L̂ over parameters, (x, y) =data, f = predictor]

The following example is a classic in statistical learning. We will examine it in two formulation.
The first is an example of a problem where � is known, and the SGD theory from above applies.

Problem setting
I y 2 {±1} (binary classification)
I We fit the linear classifier

f (x) = wTx (6)

I Loss function = hinge loss

Lh(y , f (x)) =

⇢
0 if yf (x) � 1
1� yf (x) if yf (x) < 1

= [yf (x)� 1]� (7)

Define margin of example x
z = yf (x) (8)

Under Lh an error is penalized linearly by how far f (x) is in the “wrong direction” to which
we add a penalty even for correctly classified examples if the margin yf (x) is below 1.

I using the hinge loss.
I Simplifying assumption (for now, will remove it when we study SVM): the data

D = {(xi , y i)}i=1:n are linearly separable, i.e. there exists a w⇤ that classifies the sample
with no error. Note that in general this w⇤ is not unique.

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

10

Linear Support Vector Machine SGD training algorithm
The optimization problem is a regularized one:

J(w) =
1

n

X

i

Lh(y
i ,wTxi) +

�

2
||w ||

2 (9)

with � > 0 a regularization parameter chosen by the user. Note that the non-quadratic loss
term is linear (with unknown slope at w⇤) and therefore the function J(w) is by definition
�-strongly convex.
The stochastic part of the gradient is

@Lh
@w

=

⇢
y i x i if i “error00

0 if i “correct00
(10)

where “correct” means that y i f (xi) > 1.

SGD for Linear SVM
Initialize with w0 = 0, w̄ = 0
Iterate for k = 1, 2, . . .K

1. Pick the next i in 1 : n
2. compute direction dk = �wk

� 1[i ”error”]y
i x i

3. update

wk+1 = wk
�

c

�k

⇣
�wk

� 1[i ”error”]y
i x i

⌘
= wk (1� c/k) +

c

�k
y i x i1[i 00error00] (11)

4. average w̄ w̄ + wk+1

Output w̄/K

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

13

Accelerated gradient: the “heavy ball” method

xk+1 = xk � ⌘kdk + �k (xk � xk�1) (14)

I Applies to both standard and stochastic gradient methods, i.e.

dk =

8
<

:

rf (xk) gradient descent
noisy gradient SGD
rf (xk + �k (xk � xk�1)) extragradient methods

(15)

I Setting the parameters
I In the extragradient3 methods, ⌘k , �k , �k are obtained by search (or knowledge about M,m)
I For other methods fix �k = � 2 (0.5, 1] OR use smaller � early in the training and increase it to

near 1 when the steps become smaller.
I More intuition

I for ill conditioned problems M ⌧ m, the heavy ball “accumulates” the components of the step in
the correct direction

I for SGD, the heavy ball approximates the exact gradient

3Nesterov’s “optimal”, FISTA

