

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

1

Lecture IV: Training predictors, Part II

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

October, 2021

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

2

Stochastic gradient methods
Examples: Linear classification with hinge loss, Perceptron
Accelerated gradient

No gradient methods: Coordinate descent

Stopping descent algorithms

Reading HTF Ch.: –, Murphy Ch.: 8.5.2-3 Stochastic gradient descent For more advanced

treatment Nocedal and Wrigth.

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

13

Accelerated gradient: the “heavy ball” method

xk+1 = xk � ⌘kdk + �k (xk � xk�1) (14)

I Applies to both standard and stochastic gradient methods, i.e.

dk =

8
<

:

rf (xk) gradient descent
noisy gradient SGD
rf (xk + �k (xk � xk�1)) extragradient methods

(15)

I Setting the parameters
I In the extragradient3 methods, ⌘k , �k , �k are obtained by search (or knowledge about M,m)
I For other methods fix �k = � 2 (0.5, 1] OR use smaller � early in the training and increase it to

near 1 when the steps become smaller.
I More intuition

I for ill conditioned problems M ⌧ m, the heavy ball “accumulates” the components of the step in
the correct direction

I for SGD, the heavy ball approximates the exact gradient

3Nesterov’s “optimal”, FISTA

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

12

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

12

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

15

Coordinate descent

I dk is always one of the coordinate axes uik . Hence xk+1 = xk + ⌘kuik .
I Note that line search is necessary, and that the minimum can be on either side of xk so ⌘k

can take negative values.

Convergence Theoretical and empirical results suggest that coordinate descent has similar
convergence rate as the steepest descent (i.e linear in the best case).
While in a general case coordinate descent is suboptimal, there are several situations when it is
worth considering

1. When line minimization can be done analytically. This can save one the often expensive
gradient computation.

2. When the coordinate axes a↵ect the function value approximately independently, or (in
statistics) when the coordinate axes are uncorrelated. Then minimizing along each axis
separately is (nearly) optimal.

3. When there exists a natural grouping of the variables. Then one can optimize one group
of variables while keeping the other constant. Again, we hope that the groups are
“independent”, or that optimizing one group at a time can be done analytically, or it’s
much easier than computing the gradient w.r.t all variables simultaneously. This idea is the
basis of many alternate minimization methods, including the well known EM algorithm.

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

16

Stopping descent algorithms

Paradigm

I What we would like is to stop when the error f (x⇤)� f (xi) or ||x⇤ � xk || is “small
enough”. This is possible for special classes of functions, in particular for convex functions.

I In general, we stop when some other computable quantity is “small enough”, i.e smaller
than a tolerance tol .

Stopping conditions for Batch algorithms (non-stochastic)
I What not to do:

I stop when k = 100 (or any other pre-set number K)
I stop when ||rf (xk)|| < tol Exercise Why?
I set tol <

p
"machine ⇡ 10�8

I What to do:

I The “poor man’s” stopping condition:

����1�
f (xk+1)
f (xk)

���� < tol5

I The “pro’s” stopping condition: Newton step = ||r
2f (xk)�1

rf (xk)|| < tol .
Note: don’t compute it at every step (unless you are actually running Newton method),
but only once in a while, depending on n and what descent algorithm you are using.

5The | | are not necessary if the method you use guarantees f (xk+1) < f (xk) but this is not always the case. Note also

that this fails if f (xk) = 0 or changes sign. But it works well for loss functions as they are always positive.

S
T
A
T

3
9
1
G
o
o
d
N
o
t
e
:
L
e
c
t
u
r
e
IV

:
T
r
a
in
in
g
p
r
e
d
ic
t
o
r
s
,
P
a
r
t
I
I

O
c
t
o
b
e
r
,
2
0
2
1

17

Stopping SGD

[ML framework, minimize J or L̂ over parameters, (x, y) =data, f = predictor]

I L is strongly convex, and lower bound on � known. (Hence you are using “modern” SGD.)

I Fix K in advance by using the theorem E [||✓⇤ � ✓k ||2] c0G2

�2K2 (c0 is a function of c) and setting

tol2 > c0G2

�2K2

I otherwise (old-fashioned SGD, with n0 = 1 or larger)

I every M iterations, where M is large enough, test if ||✓̄k�✓̄k�M ||
||✓̄k ||

< tol

M
a
r
in
a
M
e
il
a
:
L
e
c
t
u
r
e
V
:
S
u
p
p
o
r
t
V
e
c
t
o
r
M
a
c
h
in
e
s

N
o
v
e
m
b
e
r
,
2
0
2
2

1

Lecture V: Support Vector Machines

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

November, 2022

M
a
r
in
a
M
e
il
a
:
L
e
c
t
u
r
e
V
:
S
u
p
p
o
r
t
V
e
c
t
o
r
M
a
c
h
in
e
s

N
o
v
e
m
b
e
r
,
2
0
2
2

2

Linear SVM’s
The margin and the expected classification error
Maximum Margin Linear classifiers
Linear classifiers for non-linearly separable data

Non linear SVM
The “kernel trick”
Kernels
Prediction with SVM

Extensions
L1 SVM
Multi-class and One class SVM
SV Regression

Reading HTF Ch.: Ch. 12.1–3, Murphy Ch.: Ch 14 (14.1,14.2–14.2.4 kernels, 14.4 and
equations (14.28,14.29) kernel trick, 14.5.1.–3 Support Vector Machines), Bach Ch.: 7.1–7.4,
7.7
Additional Reading: C. Burges - “A tutorial on SVM for pattern recognition”
These notes: Appendices (convex optimization) are optional.

M
a
r
in
a
M
e
il
a
:
L
e
c
t
u
r
e
V
:
S
u
p
p
o
r
t
V
e
c
t
o
r
M
a
c
h
in
e
s

N
o
v
e
m
b
e
r
,
2
0
2
2

5

The margin and the expected classification error

Theorem Let F = {sgn (wT
x), ||w || ⇤, ||x || R} and let ⇢ > 0 be any “margin”. Then for

any f 2 F , w.p 1� � over training sets

L01(f) L̂⇢ +

s
c

n

✓
R2⇤2

⇢2
ln n2 + ln

1

�

◆
(5)

where c is a universal constant and L̂⇢ is the fraction of the training examples for which

y
i
w

T
xi < ⇢ (6)

I a data point i that satisfies (6) for some ⇢ is called a margin error

I For ⇢ = 0 the margin error rate L̂⇢ is equal to L̂01

M
a
r
in
a
M
e
il
a
:
L
e
c
t
u
r
e
V
:
S
u
p
p
o
r
t
V
e
c
t
o
r
M
a
c
h
in
e
s

N
o
v
e
m
b
e
r
,
2
0
2
2

6

Maximum Margin Linear classifiers

Support Vector Machines appeared from the convergence of Three Good Ideas
Assume (for the moment) that the data are linearly separable.

I Then, there are an infinity of linear classifiers that have L̂01 = 0. Which one to choose?
First idea Select the classifier that has maximum margin ⇢ on the training set.

By SRM, we should choose the (w , b) parameters that minimize L̂(w , b) + R(hw,b), where
hw,b is given by (??):
I For any parameters (w , b) that perfectly classify the data L̂(w , b) = 0.
I Among these, the best (w , b) is the one that minimizes R(hw,b)I R(h) increases with h, and hw,b decreases when ⇢ increases
I Hence, by SRM we should choose

argmax
⇢,w,b:L̂(w,b)=0

⇢, s.t. d(x ,Hw,b) � ⇢ for i = 1 : n, (7)

where d() denotes the Euclidean distance and Hw,b = { x |w
T
x + b = 0} is the decision

boundary of the linear classifier.

I Because d(x ,Hw,b) =
|wT

x+b|
||w|| (proof in a few slides) (7) becomes

argmax
⇢,w,b:L̂(w,b)=0

⇢, s.t.
|w

T
x
i + b|

||w ||
� ⇢ for i = 1 : n, (8)

M
a
r
in
a
M
e
il
a
:
L
e
c
t
u
r
e
V
:
S
u
p
p
o
r
t
V
e
c
t
o
r
M
a
c
h
in
e
s

N
o
v
e
m
b
e
r
,
2
0
2
2

7

Maximum Margin Linear classifiers

We continue to transform (8)

I If all data correctly classified, then y
i (wT

x
i + b) = |w

T
x
i + b|. Therefore (8) has the

same solution as

argmax
⇢,w,b

⇢, s.t.
y
i (wT

x
i + b)

||w ||
� ⇢ for i = 1 : n, (9)

I Note now that the problem (9) is underdetermined. Setting w Cw , b Cb with C > 0
does not change anything.

I We add a cleverly chosen constraint to remove the indeterminacy; this is||w || = 1/⇢,
which allows us to eliminate the variable ⇢. We get

argmax
w,b

1

w
, s.t. y

i (wT
x
i + b) � 1 for i = 1 : n, (10)

Note: the successive problems (7),(8),(9),. . . are equivalent in the sense that their optimal
solution is the same.

M
a
r
in
a
M
e
il
a
:
L
e
c
t
u
r
e
V
:
S
u
p
p
o
r
t
V
e
c
t
o
r
M
a
c
h
in
e
s

N
o
v
e
m
b
e
r
,
2
0
2
2

8

Alternative derivation of (10)

First idea Select the classifier that has maximum margin on the training set, by the alternative
definition of margin.
Formally, define mini=1:n y

i
f (xi) be the margin of classifier f on D. Let f (x) = w

T
x + b,

and choose w , b that
maximizew2Rn,b2R min

i=1:n
y
i (wT

x
i + b)

I Remarks
I (if data is linearly separable), there exist classifiers with margins > 0
I one can arbitrarily increase the margin of such a classifier by multiplying w and b by a positive

constant.
I Hence, we need to “normalize” the set of candidate classifiers by requiring instead

maximize min
i=1:n

d(x,Hw,b), s.t. y i (wT
x
i + b) � 1 for i = 1 : n, (11)

where d() denotes the Euclidean distance and Hw,b = { x |w
T
x + b = 0} is the decision

boundary of the linear classifier.
I Under the conditions of (11), because there are points for which |w

T
x + b| = 1, maximizing

d(x,Hw,b) over w , b for such a point is the same as

max
w,b

1

||w ||
, s.t. min

i

yi (w
T
x + b) = 1 (12)

M
a
r
in
a
M
e
il
a
:
L
e
c
t
u
r
e
V
:
S
u
p
p
o
r
t
V
e
c
t
o
r
M
a
c
h
in
e
s

N
o
v
e
m
b
e
r
,
2
0
2
2

9

Second idea

The Second idea is to formulate (10) as a quadratic optimization problem.

min
w,b

1

2
||w ||

2 s.t y i (wT
x
i + b) � 1 for all i = 1 : n (13)

This is the Linear SVM (primal) optimization problem

I This problem has a strongly convex objective ||w ||
2, and constraints y

i (wT
x
i + b) linear

in (w , b).
I Hence this is a convex problem, and can be studied with the tools of convex optimization.

M
a
r
in
a
M
e
il
a
:
L
e
c
t
u
r
e
V
:
S
u
p
p
o
r
t
V
e
c
t
o
r
M
a
c
h
in
e
s

N
o
v
e
m
b
e
r
,
2
0
2
2

10

The distance of a point x to a hyperplane Hw ,b

d(x ,Hw,b) =
|w

T
x + b|

||w ||
(14)

Intuition: denote

w̃ =
w

||w ||
, b̃ =

b

||w ||
, x

0 = w̃
T
x . (15)

Obviously Hw,b = H
w̃,b̃, and x

0 is the length of the projection of point x on the direction of w .

The distance is measured along the normal through x to H; note that if x 0 = �b̃ then
x 2 Hw,b and d(x ,Hw,b) = 0; in general, the distance along this line will be |x

0
� (�b̃)|.

