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Linear SVM’s
The margin and the expected classification error
Maximum Margin Linear classifiers
Linear classifiers for non-linearly separable data

Non linear SVM
The “kernel trick”
Kernels
Prediction with SVM

Extensions
L1 SVM
Multi-class and One class SVM
SV Regression

Reading HTF Ch.: Ch. 12.1–3, Murphy Ch.: Ch 14 (14.1,14.2–14.2.4 kernels, 14.4 and
equations (14.28,14.29) kernel trick, 14.5.1.–3 Support Vector Machines), Bach Ch.: 7.1–7.4,
7.7
Additional Reading: C. Burges - “A tutorial on SVM for pattern recognition”
These notes: Appendices (convex optimization) are optional.
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Second idea

The Second idea is to formulate (10) as a quadratic optimization problem.

min
w,b

1

2
||w ||

2 s.t y i (wT
x
i + b) � 1 for all i = 1 : n (13)

This is the Linear SVM (primal) optimization problem

I This problem has a strongly convex objective ||w ||
2, and constraints y

i (wT
x
i + b) linear

in (w , b).
I Hence this is a convex problem, and can be studied with the tools of convex optimization.
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The distance of a point x to a hyperplane Hw ,b

d(x ,Hw,b) =
|w

T
x + b|

||w ||
(14)

Intuition: denote

w̃ =
w

||w ||
, b̃ =

b

||w ||
, x

0 = w̃
T
x . (15)

Obviously Hw,b = H
w̃,b̃, and x

0 is the length of the projection of point x on the direction of w .

The distance is measured along the normal through x to H; note that if x 0 = �b̃ then
x 2 Hw,b and d(x ,Hw,b) = 0; in general, the distance along this line will be |x

0
� (�b̃)|.
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Optimization with Lagrange multipliers

2 The Lagrangean of (13) is

L(w , b,↵) =
1

2
||w ||

2
�

X

i

↵i [y
i (wT

x
i + b)� 1]. (16)

[KKT conditions]

At the optimum of (13)

w =
X

i

↵i y
i
x
i with ↵i � 0 (17)

and b = y
i
� w

T
x
i for any i with ↵i > 0.

I Support vector is a data point xi such that ↵i > 0.
I According to (17), the final decision boundary is determined by the support vectors (i.e.

does not depend explicitly on any data point that is not a support vector).

2The derivations of these results are in the Appendix
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Dual SVM optimization problem

I Any convex optimization problem has a dual problem. In SVM, it is both illuminating and
practical to solve the dual problem.

I The dual to problem (13) is

max
↵1:n

X

i

↵i �
1

2

X

i

↵i↵j y
i
y
j
x
i T

xj s.t ↵i � 0 for all i and
X

i

↵i y
i = 0. (18)

I This is a quadratic problem with n variables on a convex domain.
I Dual problem in matrix form

I Denote ↵ = [↵i ]i=1:n, y = [y i ]i=1:n, Gij = x
i T

xj , Ḡij = y
i
y
j
x
i T

xj ,
G = [Gij ] 2 Rn⇥n, Ḡ = [Ḡij ] 2 Rn⇥n.

max
↵2Rn

1T↵ �
1

2
↵T

Ḡ↵ s.t ↵ ⌫ 0 and y
T↵ = 0. (19)

I g(↵) = 1T↵� 1
2↵

T
Ḡ↵ is the dual objective function

I G is called the Gram matrix of the data. Note that Ḡ = diag y1:nT
Gdiag y1:n.

I At the dual optimum
I ↵i > 0 for constraints that are satisfied with equality, i.e. tight

I ↵i = 0 for the slack constraints
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Non-linearly separable problems and their duals

The C-SVM

minimizew,b,⇠
1

2
||w ||

2 + C

X

i

⇠i (20)

s.t. y
i (wT

x
i + b) � 1� ⇠i

⇠i � 0

In the above, ⇠i are the slack variables. Dual3:

maximize↵
X

i

↵i �
1

2

X

i

↵i↵j y
i
yj x

i T
xj (21)

s.t. C � ↵i � 0 for all i
X

i

↵i y
i = 0

) two types of SV

I ↵i < C data point xi is “on the margin” , y
i (wT

x
i + b) = 1 (original SV)

I ↵i = C data point xi cannot be classified with margin 1 (margin error)

, y
i (wT

x
i + b) < 1

3Lagrangean L(w, b, ⇠,↵, µ) = 1
2 ||w||2 + C

P
i
⇠i �

P
i
↵i [y

i (wT
x
i + b) � 1 + ⇠i ] �

P
i
µi⇠i with

↵i � 0, ⇠i � 0, µi � 0
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The ⌫-SVM

minimizew,b,⇠,⇢
1

2
||w ||

2
� ⌫⇢+

1

n

X

i

⇠i (22)

s.t. y
i (wT

x
i + b) � ⇢� ⇠i (23)

⇠i � 0 (24)

⇢ � 0 (25)

where ⌫ 2 [0, 1] is a parameter.
Dual4:

maximize↵ �
1

2

X

i

↵i↵j y
i
y
j
x
i T

x
j (26)

s.t.
1

n
� ↵i � 0 for all i (27)

X

i

↵i y
i = 0 (28)

X

i

↵i � ⌫ (29)

Properties If ⇢ > 0 then:

I ⌫ is an upper bound on #margin errors/n (if
P

i
↵i = ⌫)

I ⌫ is a lower bound on #(original support vectors + margin errors)/n
I ⌫-SVM leads to the same w , b as C-SVM with C = 1/⌫
4Lagrangean L(w, b, ⇠, ⇢,↵, µ, �) = 1

2 ||w||2 � ⌫⇢ + 1
n

P
i
⇠i �

P
i
↵i [y

i (wT
x
i + b) � ⇢ + ⇠i ] �

P
i
µi⇠i � �⇢

with ↵i � 0, � � 0, µi � 0
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A simple error bound

L01(fn)  E


#support vectors of fn+1

n + 1

�
(30)

where fn denotes the SVM trained on a sample of size n.
Exercise Use the Homework 6 to prove this result.
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Non-linear SVM

How to use linear classifier on data that is not linearly separable?
An old trick

1. Map the data x
1:n to a higher dimensional space

x ! z = �(x) 2 H,with dim H >> n.

2. Construct a linear classifier wT
z + b for the data in H

In other words, we are implementing the non-linear classifier

f (x) = w
T�(x) + b = w1�1(x) + w2�2(x) + . . .+ wm�m(x) + b (31)
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Example

I Data {(x , y)} below are not linearly separable
x y z

-1 -1 1 -1 -1 1
-1 1 -1 -1 1 -1
1 -1 -1 1 -1 -1
1 1 1 1 1 1

I We map them to 3 dimensions by

z = �(x) = [x1 x2 x1x2].

I Now the classes can be separated by the hypeplane z3 = 0 (which happens to be the
maximum margin hyperplane). Hence,
I w = [ 0 0 1 ] (a vector in H)
I b = 0
I and the classification rule is f (�(x)) = w

T�(x) + b.

I If we write f as a function of the original x we get

f (x) = x1x2

a quadratic classifier.
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Non-linear SV problem

I Primal problem minimize 1
2 ||w ||

2 s.t y i (wT�(xi ) + b)� 1 � 0 for all i .
I Dual problem

max
↵1:n

X

i

↵i �
1

2

X

i

↵i↵j y
i
yj�(x

i )T�(xj )| {z }
Ḡij

s.t. ↵i � 0 for all i and
X

i

y
i↵i = 0 (32)

Gij = �(xi )T�(xj ) and Ḡ = y
T
Gy (33)

I Ḡij has been redefined in terms of �
I Dual problem

max
↵

1T↵�
1

2
↵T

Ḡ↵ s.t. ↵i � 0, y
T↵ = 0 (34)

I Same as (19)!



M
a
r
in
a
M
e
il
a
:
L
e
c
t
u
r
e
V
:
S
u
p
p
o
r
t
V
e
c
t
o
r
M
a
c
h
in
e
s

N
o
v
e
m
b
e
r
,
2
0
2
2

19

The “Kernel Trick”

Third idea The result (34) is the celebrated kernel trick of the SVM literature. We can make the
following remarks.

1. The � vectors enter the SVM optimization problem only trough the Gram matrix, thus
only as the scalar products �(xi )T�(xj ). We denote by K(x , x 0) the function

K(x , x 0) = K(x 0, x) = �(x)T�(x 0) (35)

K is called the kernel function. If K can be computed e�ciently, then the Gram matrix G

can also be computed e�ciently. This is exactly what one does in practice: we choose �
implicitly by choosing a kernel K . Hereby we also ensure that K can be computed
e�ciently.

2. Once G is obtained, the SVM optimization is independent of the dimension of x and of
the dimension of z = �(x). The complexity of the SVM optimization depends only on n

the number of examples. This means that we can choose a very high dimensional �
without any penalty on the optimization cost.

3. Classifying a new point x . As we know, the SVM classification rule is

f (x) = w
T�(x) + b =

nX

i=1

↵i y
i�(xi )T�(x) =

nX

i=1

↵i y
i
K(xi , x) (36)

Hence, the classification rule is expressed in terms of the support vectors and the kernel
only. No operations other than scalar product are performed in the high dimensional space
H.
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Kernels

The previous section shows why SVMs are often called kernel machines. If we choose a kernel,
we have all the benefits of a mapping in high dimensions, without ever carrying on any
operations in that high dimensional space. The most usual kernel functions are
K(x , x 0) = (1 + x

T
x
0)p the polynomial kernel of degree p

K(x , x 0) = tanh(�xT x 0 � �) the “neural network” kernel

K(x , x 0) = e
� ||x�x

0||2

�2 the Gaussian or radial basis function (RBF) kernel
it’s � is 1-dimensional
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The Mercer condition

I How do we verify that a chosen K is is a valid kernel, i.e that there exists a � so that
K(x , x 0) = �(x)T�(x 0)?

I This property is ensured by a positivity condition known as the Mercer condition.

Mercer condition

Let (X , µ) be a finite measure space. A symmetric function K : X ⇥ X , can be written in the
form K(x , x 0) = �(x)T�(x 0) for some � : X ! H ⇢ Rm i↵

Z

X 2
K(x , x 0)g(x)g(x 0)dµ(x)dµ(x 0) � 0 for all g such that ||g(x)||L2 <1 (37)

I In other words, K must be a positive semidefinite operator on L2.
I If K satisfies the Mercer condition, there is no guarantee that the corresponding � is

unique, or that it is finite-dimensional.
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Quadratic kernel

I C-SVM, polynomial degree 2 kernel, n = 200, C = 10000
I The two ellipses show that a constant shift to the data (xi  x

i + v , v 2 Rn) can a↵ect
non-linear kernel classifiers.
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RBF kernel and Support Vectors
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Prediction with SVM

I Estimating b

I For any i support vector, wT
x
i + b = y

i because the classification is tight
I Alternatively, if there are slack variables, wT

x
i + b = y

i (1 � ⇠i )
I Hence, b = y

i (1 � ⇠i ) � w
T
x
i

I For non-linear SVM, where w is not known explicitly, w =
P

j
↵j y

j�(xj ). Hence,

b = y
i (1 � ⇠i ) �

P
n

j=1 ↵j y
j
K(xi , xj ) for any i support vector

I Given new x

ŷ(x) = sgn(wT
x + b) = sgn

 
nX

i=1

↵i y
i
K(xi , x) + b

!
. (38)
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L1-SVM

I If the regularization ||w ||
2, based on l2 norm, is replaced with the l1 norm ||w ||1, we

obtain what is known as the Linear L1-SVM

min
w,b

||w ||1 + C

X

i

⇠i s.t y i (wT
x
i + b) � 1� ⇠i , ⇠i � 0 for all i = 1 : n (39)

I The use of the l1 norm promotes sparsity in the entries of w

I The Non-linear L1-SVM is

f (x) =
X

i

(↵+
i
+ ↵�

i
)y i

K(xi , x) + b classifier (40)

min
↵±,b

X

i

(↵+
i
+ ↵�

i
) + C

X

i

⇠i s.t y i
f (xi ) � 1� ⇠i , ⇠i ,↵

±
i
� 0 for all i = 1 : n(41)

I This formulation enforces ↵+
i
= 0 or ↵�

i
= 0 for all i . If we set wi = ↵+

i
� ↵�

i
, we can

write f (x) =
P

i
wi y

i
K(xi , x) + b, a linear classifier in the non-linear features K(xi , x).

I The L1-SVM problems are Linear Programs
I The dual L1-SVM problems are also linear programs
I The L1-SVM is no longer a Maximum Margin classifier
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Multi-class and One class SVM

Multiclass SVM

For a problem with K possible classes, we construct K separating hyperplanes w
T
r x + br = 0.

minimize
1

2

KX

r=1

||wr ||
2 +

C

n

X

i,r

⇠i,r (42)

s.t. w
T

yi
x
i + b

yi
� w

T

r x
i + br + 1� ⇠i,r for all i = 1 : n, r 6= y

i (43)

⇠i,r � 0 (44)

One-class SVM This SVM finds the “support regions” of the data, by separating the data from
the origin by a hyperplane. It’s mostly used with the Gaussian kernel, that projects the data on
the unit sphere. The formulation below is identical to the ⌫-SVM where all points have label 1.

minimize
1

2
||w ||

2
� ⌫⇢+

1

n

X

i

⇠i (45)

s.t. w
T
x
i + b � ⇢� ⇠i (46)

⇠i � 0 (47)

⇢ � 0 (48)



M
a
r
in
a
M
e
il
a
:
L
e
c
t
u
r
e
V
:
S
u
p
p
o
r
t
V
e
c
t
o
r
M
a
c
h
in
e
s

N
o
v
e
m
b
e
r
,
2
0
2
2

27

SV Regression

The idea is to construct a “tolerance interval” of ±✏ around the regressor f and to penalize
data points for being outside this tolerance margin. In words, we try to construct the
smoothest function that goes within ✏ of the data points.

minimize
1

2
||w ||

2 + C

X

i

(⇠+
i
+ ⇠�

i
) (49)

s.t. ✏+ ⇠+
i
� w

T
x
i + b � y

i
� �✏� ⇠�

i
(50)

⇠±
i
� 0 (51)

⇢ � 0 (52)

The above problem is a linear regression, but with the kernel trick we obtain a kernel regressor
of the form f (x) =

P
i
(↵�

i
� ↵+

i
)K(xi , x) + b


