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Linear SVM's
The margin and the expected classification error v
Maximum Margin Linear classifiers
Linear classifiers for non-linearly separable data &-

November, 2022

Non linear SVM
The “kernel trick”
Kernels
Prediction with SVM

Extensions
L; SVM
Multi-class and One class SVM
SV Regression

Reading HTF Ch.: Ch. 12.1-3, Murphy Ch.: Ch 14 (14.1,14.2-14.2.4 kernels, 14.4 and
equations (14.28,14.29) kernel trick, 14.5.1.—3 Support Vector Machines), Bach Ch.: 7.1-7.4,
7.7

Additional Reading: C. Burges - “A tutorial on SVM for pattern recognition”

These notes: Appendices (convex optimization) are optional.
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Second idea

The Second idea is to formulate (10) as a quadratic optimization problem.
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1 . .
miEEHWH2 sty (w'x' +b)>1foralli=1:n (13)
w,

This is the Linear SVM (primal) optimization problem

» This problem has a strongly convex objective ||w||2, and constraints y/(w T x’ 4 b) linear
in (w, b).
» Hence this is a convex problem, and can be studied with the tools of convex optimization.
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The distance of a point x to a hyperplane H,, p

wix+b
dix,Hyp) = Lot (14)
[[wll
Intuition: denote b
W= 2 b= " x =w'x (15)

lwll” llwll”

Obviously H,, », = H;, , and x" is the length of the projection of point x on the direction of w.

The distance is measured along the normal through x to H; note that if x’ = —b then
X € Hy,p and d(x, Hy p) = 0; in general, the distance along this line will be [x" — (—b)|.



November, 2022

9
8
£
5
8
=
g
g
8
>
£
§
a
=
a
S
2
T
&
3
P
3
b3
s
8
b3

Optimization with Lagrange multipliers
2 The Lagrangean of (13) is
Lw,ba) = Slwll?= Y aily!(wx +b) ~ 1] (16)
ramesers '
rimal .
KKT condigci’c?ns Va”“-ugs\)

At the optimum of (13)
w = Za;yixi with a; > 0 (17)
i

and b=y’ — w'x' for any i with o > 0.
> Support vector is a data point x’ such that a; > 0.

» According to (17), the final decision boundary is determined by the support vectors (i.e.
does not depend explicitly on any data point that is not a support vector).

2The derivations of these results are in the Appendix
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Dual SVM optimization problem

>

>

vy

Any convex optimization problem has a dual problem. In SVM, it is both illuminating and
practical to solve the dual problem.
The dual to problem (13) is

1 o .
maxZoz,- - Za;ajy’yfx’TXj s.t a; > Ofor all iand Za;y’ =0. (18)
i i i

This is a quadratic problem with n variables on a convex domain.
Dual problem in matrix form

» Denote o = [j]iz1:n, ¥ = [y"];:m, Gj = xiT><j, (_;,-j = y"ij"TxJ-,
G = [Gj] e R™*", G = [Gy] € R™*".

1 ~
max1'a— ~a’Ga sta>=0andy a = 0. (19)
o ERN 2

gla)=1Ta — %aTGoz is the dual objective function

G is called the Gram matrix of the data. Note that G = diagyl:"TGdiagylz".

At the dual optimum

» «; > 0 for constraints that are satisfied with equality, i.e. tight
» «; = 0 for the slack constraints

e
Compare writh Primal ~ we®, be®. ¢ " larg

o . ewmall
Sual,, ST A large
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Non-linearly separable problems and their duals

The C-SVM =20
_gonadky
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L 1
minimizew,p,¢ §||W||2 4 € Zﬁ,— (20)
s.t. yiwTx +b) > 1—¢;
& >0 slade variahéee
| SS—
In the above, &; are the slack variables. Dual3:
- 1 -
maximizeq Za,— == Z ajoy'yix'' x; (21)
s.t. C > «; > 0for all j

Zaiyi =0

= two types of SV

> «a; < C data point x‘: is “on the margin” < y/(wTx’ 4+ b) = 1 (original SV)
> a; = C data point x' cannot be classified with margin 1 (margin error)
& yi(wTxi +b) <1
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3Lagrangean L(w, b, €, a, 1) = L[|w|[> + CX; & — X aily (wTx' + b) — 1+ &] — 5, pi€; with
a;p >0, § >0, pj >0




The v-SVM
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L 1 1
minimize,, p ¢, , EHWHZ —vp+ - Zg, (22)
i
st y(wixX'+b) > p—¢ (23)
& =0 (24)
p>0 (25)
where v € [0, 1] is a parameter.
Dual*:
o 1 P JiT
maximizeq =5 Z ajojy'y/x" x (26)
i
1 .
s.t. ~ > «a;j >0foralli (27)
n
SSew! = 0 (28)
i
Zoa,- > v (29)
i

Properties If p > 0 then:
» v is an upper bound on #margin errors/n (if >°; aj = v)
» v is a lower bound on #(original support vectors + margin errors)/n
» 1»-SVM leads to the same w, b as C-SVM with C =1/v

*Lagrangean L(w, b, £, p, o, 1, 0) = S[|w|[? —vp+ 15 & — 5 uly’(wlx' +b) — p+ &] — 0 pi&i — 8p
with a; >0, 6 >0, p; >0
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A simple error bound

November, 2022

##support vectors of f11
n+1

where f, denotes the SVM trained on a sample of size n.
Exercise Use the Homework 6 to prove this result.

LOl(fn) < E

(30)
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Non-linear SVM

How to use linear classifier on data that is not linearly separable?
An old trick

1. Map the data x1" to a higher dimensional space
x — z = ¢(x) € H,with dim H >> n.
dim w

fl

din 19
Taim A

2. Construct a linear classifier w’ z + b for the data in #
In other words, we are implementing the non-linear classifier

fx) = wlo(x) +b = widr1(x) + wada(x) + ... + Wimnm(x) + b (31)




Example
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» Data {(x,y)} below are not linearly separable
x | s| z - x
-1 -1 1 -1 -1 1
-1 1]-1] -1 1 -1
1 -1]-1 1 -1 -1 —
1 1 1 1 1 1 al
We map them to 3 dimensions by

z = ¢(x) = [x1 x2 x1x2].

> Now the classes can be separated by the hypeplane zz = 0 (which happens to be the
maximum margin hyperplane). Hence,

> w=1[001] (a vector in H)
> p=0
> and the classification rule is f(¢(x)) = w’ ¢(x) + b.

> If we write f as a function of the original x we get
f(x) = xix

a quadratic classifier.
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. How does SVM chamge ?




Non-linear SV problem

kY N
» Primal problem minimize %HWHZ sty (wlé(x') + b) —1>0 for all i. d!h\N—Jlm%
» Dual problem

1 ; ; .
maxZa,- =5 Za;aj y'y;o(x)Tp(x;) s.t. a; > 0 for all i and Zy’a,- =0 (32)
i i = i

X1:n
Gj N
ik
Gj =\o(x) o(x) \and G = yTGy  —= (33)
> G,-j has been redefined in terms of ¢
» Dual problem
1 —
max1’a — EaTGa st. 2 >0,y'a=0 (34)
«

» Same as (19)! cgm[xufﬁ
¢ - fature wap (%) %\J in O(d)
ot o s et —— Hme

.
Kix,X) = @CX) QIR
N wn-lmwer  in bl
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The “Kernel Trick”

Movember, 2022

d idea The result (34) is the celebrated kernel trick of the SVM literature. We can make the
following remarks.

1. The ¢ vectors enter the SVM optimization problem only trough the Gram matrix, thus
only as the scalar products ¢(x’)Té(x;). We denote by K(x, x") the function

Kix,x') = K(x',x) = ¢(x)7é(x) (35)

K is called the kernel function. If K can be computed efficiently, then the Gram matrix G
can also be computed efficiently. This is exactly what one does in practice: we choose ¢
implicitly by choosing a kernel K. Hereby we also ensure that K can be computed
efficiently.

2. Once G is obtained, the SVM optimization is independent of the dimension of x and of
the dimension of z = ¢(x). The complexity of the SVM optimization depends only on n
the number of examples. This means that we can choose a very high dimensional ¢
without any penalty on the optimization cost.

3. Classifying a new point x. As we know, the SVM classification rule is

n n
fx) = wio(x)+b = Y aiy'o(x) ¢(x) = > aiy’K(x',x) (36)
i=1 i=1
Hence, the classification rule is expressed in terms of the support vectors and the kernel

only. No operations other than scalar product are performed in the high dimensional space
H.
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Kernels

November, 2022

The previous section shows why SVMs are often called kernel machines. If we choose a kernel,
we have all the benefits of a mapping in high dimensions, without ever carrying on any
operations in that high dimensional space. The most usual kernel functions are

K(x,x") =.(1+x"x")A the polynomial kernel of degree p
K(x,x") = tanh(ox"x" — B)  the “neural network” kernel
_ lx=x1?
K(x,x') = e o the Gaussian or radial basis function (RBF) kernel

it's ¢ is co-dimensional

|
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The Mercer condition

» How do we verify that a chosen K is is a valid kernel, i.e that there exists a ¢ so that
K(x,x) = ¢(x)To(x')?
» This property is ensured by a positivity condition known as the Mercer condition.
Mercer condition

Let (X, 1) be a finite measure space. A symmetric function K : X X X, can be written in the
form K(x,x") = ¢(x) T ¢(x’) for some ¢ : X — H C R™ iff

/ K(x,x")g(x)g(x")du(x)du(x") > 0 for all g such that ||g(x)||r, < oo (37)
X2
» In other words, K must be a positive semidefinite operator on L;.

» If K satisfies the Mercer condition, there is no guarantee that the corresponding ¢ is
unique, or that it is finite-dimensional.



Quadratic kernel
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-2

s -4 3 -2 -1 [) 1 2 3 4

> C-SVM, polynomial degree 2 kernel, n = 200, C = 10000 )
» The two ellipses show that a constant shift to the data (x' + x' + v, v € R") can affect
non-linear kernel classifiers.
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RBF kernel and Support Vectors
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Prediction with SVM

» Estimating b

November, 2022

P For any i support vector, wixi+ b= yi because the classification is tight
> Alternatively, if there are slack variables, w’ x' + b = y'(1 — &)
» Hence, b=y/(1 — &) —w'x

P For non-linear SVM, where w is not known explicitly, w = Zj ajyjcb(xj). Hence,
b=y'(1-¢)— > ajy!K(x', xI) for any i support vector

> Given new x

9(x) = sgn(w’x+ b) = sgn <Z iy K(x', x) + b> . (38)

i=1

9
8
£
5
8
=
g
g
8
>
£
§
a
=
a
S
2
°
&
3
P
3
b3
s
8
b3




L1-SVM
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> If the regularization HWH2, based on h norm, is replaced with the /i norm ||w||1, we
obtain what is known as the Linear L1-SVM

mi2||w||1+CZ§,- styl(w/x' +b)>1—¢, &>0foralli=1:n  (39)

» The use of the /; norm promotes sparsity in the entries of w

» The Non-linear L1-SVM is

f(x) = Z(afr + o{)y’K(X,-,x) + b classifier (40)
i
;nii?b Z(ajf +a7)+ CZ{,- sty f(x') >1—¢;, &,aF >0foralli=1(4l)
» This formulation enforces ozl.+ =0ora; =0forall i Ifwesetw; = ozl.+ — a; , we can

i
write f(x) = 3°; wjy'K(x', x) + b, a linear classifier in the non-linear features K(x', x).
The L1-SVM problems are Linear Programs

The dual L1-SVM problems are also linear programs

» The L1-SVM is no longer a Maximum Margin classifier
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Multi-class and One class SVM

Multiclass SVM
For a problem with K possible classes, we construct K separating hyperplanes W,TX + b, = 0.

K
. 1 C
minimize 5 Z [|wr||? + o Zéi” (42)
r=1 ir
s.t. Wy‘l;X" +b,i > w, X"+ b, +1— & foralli=1:n, r# y' (43)
fi,r 2 0 (44)

One-class SVM This SVM finds the “support regions” of the data, by separating the data from
the origin by a hyperplane. It's mostly used with the Gaussian kernel, that projects the data on
the unit sphere. The formulation below is identical to the v-SVM where all points have label 1.

S 1 2 1
minimize EHWH —vp+ . Zf{,- (45)
s.t. wix'+b > p—¢ (46)
& =0 (47)
p>0 (48)



SV Regression
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The idea is to construct a “tolerance interval” of +¢ around the regressor f and to penalize
data points for being outside this tolerance margin. In words, we try to construct the
smoothest function that goes within € of the data points.

S 1 2 L -
minimize EHWH 4F Czi:(fi &) (49)
s.t. €+ §,+ > wix +b—y > —e— & (50)
¢t >0 (51)
p >0 (52)

The above problem is a linear regression, but with the kernel trick we obtain a kernel regressor
of the form f(x) = Y_;(a; — ol )K(x',x) + b
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