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: Ali Rahimi and Ben t “Random features for large-scale Kernel Machine”, NIPS
2007. Test of Time Award, NIPS 2017.




Problem: Kernel machines scale with sample size n

» Gram matrix G = [k(x",xf')]’-b-:1 € R"*". Expensive/intractable for n large!

» Want to: benefit from infinite dimensional feature spaces, e.g. Gaussian kernel, AND have
constant dimension D for any n

» ldea approximate k(x,x’) with finite sum.

» Equivalently, approximate feature space H with D-dimensional feature space. How? Pick
D features at random!




Why is this possible? Bochner's Theorem

Let K(x,x") = K(x — x") be a continuous shift invariant kernel.

Theorem [Bochner]

K(x, x") is a positive definite kernel iff K(A) is the Fourier transform of some non-negative

measure p(w). D “"}'A
K(A) = / pwe by ¥ 2 € (1)
Rd =t
WJ o ’P[W) ”d

K(A) p(w)
NI (27r)*d/2e*HwH2/2 Gaussian (RBF) kernel
e— 1Al (2m)~¢ H}le ﬁ Laplace kernel
e, 2= e— 1Al product kernel
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From Bochner to RFF
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Fact

A= K —x!

Note that e~ /w4 = e—iv X\e*"“’T’(/)* and let ¢ (x) = e—iw'x,

Then K(A) = Ey)[Cw (¥) 5 (X))~ %Zjil Cu; (x)(jjj (x") with wy.p ~i.i.d. p(w)
D is the sample size, must be large enough for good approximation

Cwy.p form a random feature space of dimension D

Feature map is x — ¢(x) = I[Cwl - Cwp]

Because K() is real, the random complex features ¢, < v/2cos(w” x + b) with
b ~ uniform|0, 27]

Significance Infinite dimensional feature vector ¢(x) approximated by D-dimensional
feature vector (;;(X) Hence, primal problem of dimension D can be solved instead of dual
of dimension n.

Opens up SVM/kernel machines for large data
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Approximation

Theorem [Rahimi and Recht 07]

Assume space X is compact of diameter dy and let 0,23 = Ep[w”w] be the standard deviation
of p(w). Then,

1.

T NT (! ’ - 240’de ?
Pr| sup |¢(x)' o(x") — K(x,x")| > €| < e 48D [ ——— ()
x,x'eXx €

2. For ¢ confidence level,

D=0 (;2 In U”dX) 3)



Kernel machine with RFF algorithm

In Data X1:”,y1:", kernel K

1. Fourier transform p(w) = % Jra e*"‘*’TAK(A)dA.

2. Choose D.

3. Sample@yy.p i.i.d. from p. Sample by.p uniformly from [0, 27].

4. Map data to features ¢(x') = ,/%[cos(wfx" + bj)]j=1.p forall i=1:n.

5. Solve SVM Primal problem; obtain w € RP and intercept b € R. (note that b is not one
of b1:D).
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What 1s observed

Double descent ‘ I
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5 . Test risk Test risk
4%' TE : 'é “classical” “modern®
N':: m regime interpolating regime
E . .
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g ~ o Training risk ~ Training risk:

sweet spot_ . — =~ . _interpolation threshold
Capacity of H = (9 yy 5(/‘7? Capacity of H
C/ / WW @{ ? Belkin, Hsu, Ma, Mandal 2018

m Classical regime p <N

= Modern/Deep Learning/High dimensional regime N > n

Think N fixed, p increases, gamma=p/N
Training error = 0 (interpolation)
Test error decreases with p (or gamma)



What 1s observed |.

Zero-one loss Squared loss
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Belkin, Hsu, Ma, Mandal 2018

= Double descent curves for the generalization error
Random Fourier Features (RFF)
RelU 2 layer networks (with random first layer weights)
Random Forests, 12-Adaboost
Linear regression

m With and without noise



Double descent, the case p > N |.

Zero-one loss Squared loss
88 = 1709 =
-~ RFF -~ RFF
— Min. norm solution h,, . — Min. norm solution b, .
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Belkin, Hsu, Ma, Mandal 2018

m Model y = <phi(x),beta >
m Large N (cover a compact data domain)
m Features random

m Min-norm solution beta*



Main intuition [Belkin et al.] |I
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m The target function h* is (mostly) smooth
l.e. | |h*| | ggusis small

m p > N, no noise, hence h‘p interpolates data
= Train to minimize | [h,| | subject to O training error

m Then | |h, || will decrease with p!



Random Fourier Features (RFF) |I

Random Fourier features. We first consider a popular class of non-linear parametric models
called Random Fourier Features (RFF') [30], which can be viewed as a class of two-layer neural
networks with fixed weights in the first layer. The RFF model family Hy with N (complex-valued)
parameters consists of functions h: R — C of the form

N
hz) =3 axd(z;ve) where ¢(z;v) == eV 102,
k=1

and the vectors v1,. .., vy are sampled independently from the standard normal distribution in R¢.
(We consider H v as a class of real-valued functions with 2N real-valued parameters by taking real
and imaginary parts separately.) Note that H is a randomized function class, but as N — oo, the
function class becomes a closer and closer approximation to the Reproducmg Kemel Hllbert Spa.ce
(RKHS) correspondmg to the Gaussmn kernel denoted by 'Hoo o

= RFF > H,_

finity



Theorem |I

Theorem 1. Fiz any h™ € H.,. Let (z1,y1),...,(Zn,yn) be independent and identically distributed
random variables, where x; is drawn uniformly at random from a compact cubcEl Q ¢ RY, and
yi = h*(zi) for all i. There exists absolute constants A, B > 0 such that, for any interpolating
h € Ha (i.e., h(x;) = y; for all i), so that with high probability

sup |h(z) — h*(z)| < Ae” B/ 8™ (|| B2 5, + [|Ala..) -
€N



