Lecture 18

Modern NN results NN ~ GP SVM→RFF, DD AIC, BIC, CV, SRM Structural Risk Minimization

RKHS Reproducing Kernel Hilbert Spaces
$$\mathcal{H}_{1} = \{ f(x) = \sum_{i=1}^{\infty} x_{i} \, k_{i}(x_{i}, x_{i}) | x_{i} \in \mathbb{R}, \, x_{i} \in X \text{ for all } i \}$$

$$f: X \to \mathbb{R} \quad \underset{i=1}{\mathbb{R}} x_{i} \times x_{i} = X \text{ for all } i \}$$

$$f: X \to \mathbb{R} \quad \underset{i=1}{\mathbb{R}} x_{i} \times x_{i} = X \text{ for all } i \}$$

$$f: X \to \mathbb{R} \quad \underset{i=1}{\mathbb{R}} x_{i} \times x_{i} = X \text{ for all } i \}$$

$$f: X \to \mathbb{R} \quad \underset{i=1}{\mathbb{R}} x_{i} \times x_{i} = X \text{ for all } i \}$$

$$f: X \to \mathbb{R} \quad \underset{i=1}{\mathbb{R}} x_{i} \times x_{i} = X \text{ for all } i \}$$

$$f: X \to \mathbb{R} \quad \underset{i=1}{\mathbb{R}} x_{i} \times x_{i} = X \text{ for all } i \}$$

$$f: X \to \mathbb{R} \quad \underset{i=1}{\mathbb{R}} x_{i} \times x_{i} \times x_{i} = X \text{ for all } i \}$$

$$f: X \to \mathbb{R} \quad \underset{i=1}{\mathbb{R}} x_{i} \times x_{i} \times x_{i} = X \text{ for all } i \}$$

$$f: X \to \mathbb{R} \quad \underset{i=1}{\mathbb{R}} x_{i} \times x_{i} \times x_{i} = X \text{ for all } i \}$$

$$f: X \to \mathbb{R} \quad \underset{i=1}{\mathbb{R}} x_{i} \times x_{i} \times$$

$$\varphi(x) = \begin{bmatrix} \varphi_{1}(x) \\ \vdots \\ \varphi_{e}(x) \end{bmatrix}$$

$$\|x\|^{2} = \varphi_{0} \varphi_{0} \varphi_{0}(x) = k(x, x)$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x') - 2k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x) + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x') + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x') + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x') + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x') + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x') + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x') + k(x, x')$$

$$\|x - x'\|^{2} = k(x, x') + k(x')$$

$$\|x - x'\|^{2} = k$$

SVM C Kernel machines
original non-linear functions in RKHs over X
original (predictors)
name
typically
classifier

SV Classification + Kurnel trick SV Regression & NW Kernel regression
SV 1-class classification = Estimating supp of distribution data matrix $X = \begin{bmatrix} -x^{1} - \\ -x^{n} - \end{bmatrix} \in \mathbb{R}^{n \times d}$ assume $1^TX = 0$ From G : PCA project X on principal $XV_{1:S}$ space

TVD $X = U \Lambda V^{T}$ ortho

ortho $X = U \Lambda V^{T} V^{T}$ ortho $G = XX^T = U\Lambda^2 U^T \Rightarrow Y = U\Lambda$ obtained | project X on from G : PCA prince Kernel PCA algorithm 1. Compute $G = [k(x^i, x^j)]_{i,j=1:n}$ gram $\max_{i,j=1:n} \max_{i} n \times n$

2. Eigendecomposition => U, L

select top & e-values

4. xi -> row i of U1:d [21.- >d]

Kernel machines for Big N (and que high dim)

Lecture VI-2: SVM with Random Fourier Features

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

November, 2021

Reading: Ali Rahimi and Ben Reeht "Random features for large-scale Kernel Machine", NIPS 2007. Test of Time Award, NIPS 2017.

Problem: Kernel machines scale with sample size n

- ▶ Gram matrix $G = [k(x^i, x^j)]_{i,j=1}^n \in \mathbb{R}^{n \times n}$. Expensive/intractable for n large! ▶ Want to: benefit from infinite dimensional feature spaces, e.g. Gaussian kernel, AND have constant dimension D for any n
- ▶ Idea approximate k(x, x') with finite sum.
- **Equivalently, approximate feature space** \mathcal{H} with D-dimensional feature space. How? Pick D features at random!

Why is this possible? Bochner's Theorem

$$\Delta = X - X'$$

Let K(x, x') = K(x - x') be a continuous shift invariant kernel.

Theorem [Bochner]

K(x,x') is a positive definite kernel iff $K(\Delta)$ is the Fourier transform of some non-negative measure $p(\omega)$.

$$K(\Delta) = \int_{\mathbb{R}^d} p(\omega) e^{-i\omega^T \Delta} d\omega \approx \sum_{j=1}^{D} e^{i\omega_j^T \Delta}$$

$$\omega_j \sim p(\omega) \quad \text{iid}$$

$$\begin{array}{c|cccc} K(\Delta) & p(\omega) & & & & & & \\ e^{-||\Delta||^2/2} & (2\pi)^{-d/2}e^{-||\omega||^2/2} & \text{Gaussian (RBF) kernel} \\ e^{-||\Delta||_1} & (2\pi)^{-d}\prod_{j=1}^d \frac{1}{1+\omega_j^2} & \text{Laplace kernel} \\ \prod_{j=1}^d \frac{2\pi}{1+\omega_j^2} & e^{-||\Delta||_1} & \text{product kernel} \end{array}$$

From Bochner to RFF D= X-X1 Fourier feature

- Note that $e^{-i\omega\Delta} = e^{-i\omega^T x} (e^{-i\omega^T x'})^*$ and let $\zeta_\omega(x) = e^{-i\omega^T x}$.
- ► Then $K(\Delta) = E_{p(\omega)}[\zeta_{\omega}(x)\zeta_{\omega}^*(x')] \approx \frac{1}{D} \sum_{i=1}^{D} \zeta_{\omega_i}(x)\zeta_{\omega_i}^*(x')$ with $\omega_{1:D} \sim \text{i.i.d. } p(\omega)$
- D is the sample size, must be large enough for good approximation
- \blacktriangleright $\zeta_{\omega_1,p}$ form a random feature space of dimension D

Feature map is $x \to \underline{\tilde{\phi}}(x) = \frac{1}{\sqrt{D}} [\zeta_{\omega_1} \dots \zeta_{\omega_D}]$ sampled φ

Fact Because K() is real, the random complex features $\zeta_{\omega} \leftarrow \sqrt{2}cos(\omega^{T}x + b)$ with $b \sim uniform[0, 2\pi]$

- **Significance** Infinite dimensional feature vector $\phi(x)$ approximated by D-dimensional feature vector $\tilde{\phi}(x)$. Hence, primal problem of dimension D can be solved instead of dual of dimension n.
- Opens up SVM/kernel machines for large data

y' (wT \varphi(xi)+b) > 1

min = IWI 2 s.t WERD b ER

Approximation

Theorem [Rahimi and Recht 07]

Assume space $\mathcal X$ is compact of diameter $d_{\mathcal X}$ and let $\sigma_p^2=E_p[\omega^T\omega]$ be the standard deviation of $p(\omega)$. Then,

1.

$$Pr\left[\sup_{x,x'\in\mathcal{X}}|\tilde{\phi}(x)^{T}\tilde{\phi}(x')-K(x,x')|\geq\epsilon\right]\leq e^{-\frac{D\epsilon^{2}}{4(d+2)}}\left(\frac{2^{4}\sigma_{p}d\chi}{\epsilon}\right)^{2}$$
 (2)

2. For δ confidence level,

$$D = \Omega\left(\frac{d}{\epsilon^2} \ln \frac{\sigma_p d\chi}{\epsilon}\right) \tag{3}$$

Kernel machine with RFF algorithm

In Data $x^{1:n}$, $y^{1:n}$, kernel K

- 1. Fourier transform $p(\omega) = \frac{1}{2\pi} \int_{\mathbb{R}^d} e^{-i\omega^T \Delta} K(\Delta) d\Delta$.
- 2. Choose D.
- 3. Sample $w_{1:D}$ i.i.d. from p. Sample $w_{1:D}$ uniformly from $[0, 2\pi]$.
- 4. Map data to features $\tilde{\phi}(x^i) = \sqrt{\frac{2}{D}}[cos(\omega_j^T x^i + b_j)]_{j=1:D}$ for all i = 1:n.
- 5. Solve SVM Primal problem; obtain $w \in \mathbb{R}^D$ and intercept $b \in \mathbb{R}$. (note that b is not one of $b_{1:D}$).

 $k(x,x') = e^{-\frac{|(x-x')|^2}{2\sigma^2}}$ $\|\varphi(x) - \varphi(x)\|^2 = \|\varphi(x)\|^2 + \|\varphi(x')\|^2 - 2\varphi(x')\varphi(x')$ $k(x,x) = e^0 = 1 \implies = 2-2k(x,x')$

Beyond the Bias-Variance trade-off STAT 535+LPL2019

Marina Meila

University of Washington

What is observed

- Classical regime p < N
- Modern/Deep Learning/High dimensional regime N > n
 - Think N fixed, p increases, gamma=p/N
 - Training error = 0 (interpolation)
 - Test error decreases with p (or gamma)

What is observed

- Double descent curves for the generalization error
 - Random Fourier Features (RFF)
 - ReLU 2 layer networks (with random first layer weights)
 - Random Forests, 12-Adaboost
 - Linear regression
- With and without noise

Double descent, the case p > N

- Model y = <phi(x), beta >
- Large N (cover a compact data domain)
- Features random
- Min-norm solution beta*

Main intuition [Belkin et al.]

Want $f(x^i) = y^i$ for i = 1:nand f smoothest

 $\mathcal{F} \supset \mathcal{F}_o = \{f : f(x^i) = y^i, i = 1:n\}$ $\hat{f} = \text{twoothest in } \mathcal{F}_o$

- The target function h* is (mostly) smooth
 - i.e. $||h^*||_{RKHS}$ is small
- p > N, no noise, hence h_p interpolates data
- Train to minimize | | h_p | | subject to 0 training error
- Then $||h_p||$ will decrease with p!

Random Fourier Features (RFF)

Random Fourier features. We first consider a popular class of non-linear parametric models called Random Fourier Features (RFF) [30], which can be viewed as a class of two-layer neural networks with fixed weights in the first layer. The RFF model family \mathcal{H}_N with N (complex-valued) parameters consists of functions $h: \mathbb{R}^d \to \mathbb{C}$ of the form

$$h(x) = \sum_{k=1}^N a_k \phi(x; v_k) \quad ext{where} \quad \phi(x; v) := e^{\sqrt{-1} \langle v, x
angle},$$

and the vectors v_1, \ldots, v_N are sampled independently from the standard normal distribution in \mathbb{R}^d . (We consider \mathcal{H}_N as a class of real-valued functions with 2N real-valued parameters by taking real and imaginary parts separately.) Note that \mathcal{H}_N is a randomized function class, but as $N \to \infty$, the function class becomes a closer and closer approximation to the Reproducing Kernel Hilbert Space (RKHS) corresponding to the Gaussian kernel, denoted by \mathcal{H}_∞ .

$$\blacksquare \text{ RFF} \to \mathcal{H}_{\text{infinity}}$$

Theorem

Theorem 1. Fix any $h^* \in \mathcal{H}_{\infty}$. Let $(x_1, y_1), \ldots, (x_n, y_n)$ be independent and identically distributed random variables, where x_i is drawn uniformly at random from a compact cube $\Omega \subset \mathbb{R}^d$, and $y_i = h^*(x_i)$ for all i. There exists absolute constants A, B > 0 such that, for any interpolating $h \in \mathcal{H}_{\infty}$ (i.e., $h(x_i) = y_i$ for all i), so that with high probability

$$\sup_{x \in \Omega} |h(x) - h^*(x)| < A e^{-B(n/\log n)^{1/d}} \left(\|h^*\|_{\mathcal{H}_{\infty}} + \|h\|_{\mathcal{H}_{\infty}} \right).$$