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Doubte Deseont

What 1s observed |.

Zero-one loss Squared loss
88 = 1709 =
N - RFF ~&— RFF
\ Min. norm solution h, . Min. norm solution b, «
\ - (original kernel) - (original kernel)
() 100
2 ;
g 17 <\ g 10 -
= j(\\ (A &}VW\/
1 =
4 oy
— — 0 - — —
2 T T T T T T T T T T T T T T
n in 2N an AN en aNn n in N an AN N an
:ﬁ_» Belkin, Hsu, Ma, Mandal 2018

= Double descent curves for the generalization error
Random Fourier Features (RFF)
RelU 2 layer networks (with random first layer weights)
Random Forests, 12-Adaboost
Linear regression

m With and without noise



Main intuition [Belkin et al.]

10
A = = N=40 RelLU features
8r | ‘\ —— N=4000 ReLU features
6F I
U
4 |
I
2 I
0
-2
-4
-6 1 1 L 1 L 1 1
-3 2 -1 0 1 2 3 ” [)
m The target function h* is (mostly) smooth Win 'JC b7

l.e. | |h*| | ggusis small
m p > N, no noise, hence hp interpolates data
= Train to minimize | [h,| | subject to O training error

m Then | |h, || will decrease with p!



A ssume ?mom—fe'?(, aan bk found

Random Fourier Features (RFF) |I

Random Fourier features. We first consider a popular class of non-linear parametric models
called Random Fourier Features (RFF') [30], which can be viewed as a class of two-layer neural
networks with fixed weights in the first layer. The RFF model family Hy with N (complex-valued)
parameters consists of functions h: R — C of the form

N
h(z) =Y axd(z;ve) where (z;v) i= eV 1),
k=1

and the vectors v1,. .., vy are sampled independently from the standard normal distribution in R¢.
(We consider H v as a class of real-valued functions with 2N real-valued parameters by taking real
and imaginary parts separately.) Note that H is a randomized function class, but as N — oo, the
function class becomes a closer and closer approximation to the Reproducmg Kernel Hllbert Spa.ce
(RKHS) correspondmg to the Gaussm.n kernel denoted by ’Hoo o

= RFF > H,_

finity
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Theorem

g eTo, 1]

Theorem 1. Fiz any h* € H... Let (z1,¥y1),...,(z,,y,) be independent and identically distributed
random variables, where x; is drawn uniformly at random from a compact cubE] Q ¢ RY, and
WO yi = h*(zi) for all i. There exists absolute constants A, B > 0 such that, for any interpolating
M h € Hoo (i.e., h(z;) = y; for all i), so that with high probability
147 e
sup |h(z) — h*(z)| < Ae™ BB (R lgy .+ [|hllp.) -
=

)
s e = e
i“’f“”?a(w err O \/ \' s wooH
for N> ¢t P'N—dﬁd“/
Farget

\%
o swmadl
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Zero-one loss

~4— RFF
Min. norm solution h, .
(original kernel)
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-~ RFF
w—aee Min. norm solution h, .

I ' L 1 I '
0 10 20 30 40 50 60
-4~ RFF
T T T T
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Number of Random Fourier Features (x10%) (N)
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Norm

Train

1709

100
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Squared loss

-~ RFF
Min, norm solution h,, .
(original kernel)

O -

10 20

- RFF
w—aee Min. norm solution A, .

I L L\l 1 I I
0 10 20 30 40 50 60
~&= RFF
T T T T
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Number of Random Fourier Features (x10%) (N)
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Boosted decision trees

Zero-one loss (%)

MNIS‘IE' (n = 10,10 classes)
: — Test
- : wTrain
,
1
- 1
: N
-l 1 : 1 1
1
- '
1
1
- '
|
*—
; N
e
1 I : 1 ||
11 251, 50/1 50/10 50120

|
Model p.arameters: Niree / Nigrest

Zero-one loss (%)

SVHN (n = 10, 10 classes)

- Test
~=== Train
—
T T T T
T T T T
11 501 10011 100/10 100/20

Model parameters: Nyrea / Nigrest



o 4 ' Min-norm LS, SNR=1
Min-norm LS, SNR=5
Min-norm LS, misspecified
Optimal ridge, misspecified

Linear regression.. S ;e
[Hastie, Montanari, Rosset, TR x;
Tibshirani 2019] S ‘

Risk

151 ear, n nlinear features
avet € same way

m Model correct, misspecified

m Noise level S 1gma affects
asymptotic e

= and optimal N/n

T l T I T I T
0.1 0.2 0.5 1.0 20 50 100

= Double descent is not YU
regularization

Figure 1: Asymptotic risk curves for the linear feature model, as a function of the limiting aspect ratio +y. The risks for min-norm
least squares, when SNR = 1 and SNR = 5, are plotted in black and red, respectively. These two match for y < 1 but differ for
7 > 1. The null risks for SNR = 1 and SNR = 5 are marked by the dotted black and red lines, respectively. The risk for the case of
a misspecified model (with significant approximation bias, @ = 1.5 in (13)), when SNR = 5, is plotted in green. Optimally-tuned
(equivalently, CV-tuned) ridge regression, in the same misspecified setup, has risk plotted in blue. The points denote finite-sample
risks, with n = 200, p = [7yn], across various values of y, computed from features X having i.i.d. N'(0, 1) entries. Meanwhile, the
“x" pomts mark finite-sample risks for a nonlinear feature model, with n = 200, p = [yn],d = 100,and X = @(ZW7), where
Z hasiid. N(0,1) entries, W has i.i.d. N(0,1/d) entries, and ¢(t) = a(|t| — b) is a “purely nonlinear” activation function, for
constants a, b. The theory predicts that this nonlinear risk should converge to the linear risk with p features (regardless of d). The
empirical agreement between these two—and the agreement in finite-sample and asymptotic risks—is striking.
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More refined analysis incl S noise, non-linearity, data dimension n, ridge regularization
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Lecture Notes IV.l.2 — Simple analysis of gradient descent

Marina Meila
mmp@stat.washington.edu

Department of Statistics
University of Washington
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Rate of linear convergence x

Newton-Raphson “rounds” the surface of f around minimum x

Implicit bias of Gradient Descent V

Reading HTF Ch.: —, Murphy Ch.: —, Bach Ch.: , Bach Chapter 5.2, 10.1
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Useful facts

Assume that our function f is quadratic, i.e

1
f(x) = EXTHX +g"x+c with H > 0. (1)
Then,
Vf(x) = Hx+g = H(x—x") (2)
V3f(x) = H (3)
x* —H'g, and Hx* = —g (4)
(5)

Gradient descent x'™! = xt — nVf(xt)
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Rate of linear convergence

xH—x* = (xt = pH(x! — x¥)) — x* (6)
[ = gH](x = x*) = (I — M) (< = x7) @)
ettt < ||l —nH||te®  with ef = ||xt — x*|| (8)
f(x)—f(x*) = %(X—X*)TH(X—X*) for any x 9)
Proof
1(X—X*)TH(X —x*) = 1xTHX—&— E(X*)THX* — xTHx* recall Hx* = —g (10)
2 2 2 SN——
T
1 *\T * T %
= f(x)— E(x) Hx* + g’ x (11)
Hence,
) =) = 200 —x)T (1= nH)* GO — x°) (12)

because H(l —nH) = (I —nH)H (13)
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Choice of n

For convergence, we want to control the maximum eigenvalue of (I — nH). Let m, M the min,

max singular values of H.
minimize; max¢(m,m|1l — nA|

We obtain 7%* = Mim o

2
- 2
= M+ m
For this n* we obtain
M—m
/8* Eo'max(l_nH) = M+ m

(14)

(15)

(16)

This value is always in [0,1]. Denote by k = % the condition number of H; 5* approaches 1

when « is large.



o
2
2
2
g
8
3
P
T
3
s
£
5
=

Newton-Raphson “rounds” the surface of f around minimum

> If we take H =/, then 3 = 0, meaning that the first order convergence is infinitely fast
(super-linear convergence).
» How can we make H = [? We transform the variable x by

x = H Y2z 7z = HY?x (17)

Then f(z) = %HZH2 +gTH=1/2z 4 ¢ and the new Hessian is /.
Let us look at the gradient descent in z.

Vif(z) = z+(H?)'g (18)
zt+1 = Ft_ n(zt + (H—l/z)Tg) (19)
Xt = HTY2z4 o (1 - ) HY22t e (20)

= (1 — X = VEF()VAF(X) (21)

» Hence the Newton step is a gradient step in the transformed coordinates z.
A0 B=Al/? BTB=A Al/2
A=l = (BTB)~! = B1(BT)~! Exercise Prove that B is non-singular when A is
non-singular; find the equivalence class of all B which are the square root of some A.
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Gradient descent for Least Squares Loss

Consider linear regression, with £4#) = L;5(0) = 2—1n||y — X0||? with d > n. Let XXT € R"™%" be
the kernel matrix and H = lXTX the covariance matrix.

Gb on Lis ~ Lty = 0 HY — Tx0+—y y : (22)

g/,«adlza}nc ? X‘Y—X’—.

> We start from 6% = 0. = /

» We don’t assume the solution is unique. In other words, H may be singulpr.

» |n particular, note that for d > n, H is singular, but K is invertible w.l.0.g. when the
system X6 = y has a solution (and the system has an infinite number of solutions).

» For any 0* satisfying y = X0* and for some iterate 0 we have

(1 = nH)H(6° — 07) m‘“"’aﬂ{m)

ot — o*
0° = [ —(I—nH)e" (24)
N / nel
Po: Linaar regrosion T v (ared
n_ OTX “M(‘Ala wWakmx

J H=OT dxd

_} Covanan

assume 2R=o
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The GD path ~ min L. by &b Jl=Ho+L XTf)
» Now on the GD path (which is deterministic given X) n

1

g = Xy (25)
1 &« lincar

0—yVF(0) = —n=XTy comsnation25)

8§ X"
Thus 6% is a linear combination of the rows of X (i.e. of the data points).
» By induction, 6t for any t is a linear combination of the rows of X, hence

®=0 = VHO)

01

0t = XTat, with of € R" (27)

> Since the gradient is non-zero whenever y # X0, the GD algorithm converges to a point!
where y = X0 = XXT q..

» When K is invertible let o* = K~ 1y; then 6* = XTa* is the limit of GD.
8= Xo* ot Gfem v@naenca .o )
= KoF = o(F=
x_e j é/ 0( K . —lg-
o = Xk
SOUJ/HO’O €6 b

1 This is informal. What we can say that when t is sufficiently large, X0t = xxTalis arbitrarily close to y.
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0* is the minimum norm solution of X8 = y

» To prove this, we must use convex duality.

1 1
Primal: ir;f5||9|\2 st. X0=y & Dual:supigf§||0||2 +a'(y —X6) (28)
«@

> Solving the optimization over 6 as a function of the parameter o we obtain 6 = X7 cv.
> We replace 6 in (28) to obtain J(

sipaTy - %aTKa X2 n X;A:XVL@Q)

This is a concave function with optimum|a* = K~y Yes, we get the same o* from the
previous page!

» Finally, the solution to the Primal problem is 6* = XTa* = X7 K~ly, the solution
obtained by Gradient Descent!

Note that 6* above is not the OLS solution. In OLS, we minimize residuals norm, here we
minimize the 6 norm.



Lecture VII — Wide multilayer networks and the Neural Tangent

Kernel (NTK)
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Notation

» Neural network predictor f(x;0), where x € R4
» For each layer / = 1 : L of dimension my, with x0 = x, and z! = f(x)

ZI+1 — Wl+lxl+b/+1 X/+1 — ¢(Z/+1) (1)

Here x/:/*1 z/+1 pl*+1 are column vectors W/t is a my, 1 x m; matrix, ¢() is the
non-linearity /activation function.

» The weights

W,-JI- = awwé-/\/m,, bjl- = UbB}, Known as NTK parametrization (2)
> Parameter vector = vector{w!, gL} € RP initialized i.i.d. ~ N(0,1)
>

ow,b are fixed hyper-parameters, 1/,/m; normalizes the expected norm of W! columns
Loss L(y, f)

v

\4

We want to analize the behavior of this network f() at initialization and during training,

when my.; very large

Three approximations help analysis

(A1) continuous time training, called gradient flow

(A2) my.. — oo in the wide limit, we can apply the Central Limit Theorem (CLT), and Gaussian
Processes

(A3) parameters 6 do not change much during training, i.e. 6; — 6q is small
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