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What is observed 

n  Double descent curves for the generalization error  
n  Random Fourier Features (RFF)  
n  ReLU 2 layer networks (with random first layer weights) 
n  Random Forests, l2-Adaboost 
n  Linear regression 

n  With and without noise 

Belkin, Hsu, Ma, Mandal 2018 



+
Main intuition [Belkin et al.] 

n  The target function h* is (mostly) smooth 
n  i.e. ||h*||RKHS is small 

n  p > N, no noise, hence hp interpolates data 

n  Train to minimize||hp|| subject to 0 training error 

n  Then ||hp||  will decrease with p! 



+
Random Fourier Features (RFF) 

n  RFF à Hinfinity 



+
Theorem 



+
RFF 



+
Boosted decision trees 



+
Linear regression 
[Hastie, Montanari, Rosset, 
Tibshirani 2019] 

n  Linear, nonlinear features 
behave the same way 

n  Model correct, misspecified 

n  Noise level sigma affects 
asymptotic error 

n  and optimal N/n 

n  Double descent is not 
regularization 



+

n  More refined analysis includes noise, non-linearity, data dimension n,  ridge regularization 
lambda [Mei, Montanari 2019] 

n  When is global minimum in overparametrized regime? 

n  Enough data N/n > 1 

n  lambda à 0 ( or min-norm LS) 

n  p >> N   

n  SNR || beta ||/noise > 1 

n  Bias, Variance strictly decreasing with p/N to > 0 limit   
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Rate of linear convergence

Newton-Raphson “rounds” the surface of f around minimum

Implicit bias of Gradient Descent

Reading HTF Ch.: –, Murphy Ch.: –, Bach Ch.: , Bach Chapter 5.2, 10.1
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Useful facts

Assume that our function f is quadratic, i.e

f (x) =
1

2
x
T
Hx + g

T
x + c with H � 0. (1)

Then,

rf (x) = Hx + g = H(x � x
⇤) (2)

r2
f (x) = H (3)

x
⇤ = �H

�1
g , and Hx

⇤ = �g (4)

(5)

Gradient descent xt+1 = x
t � ⌘rf (xt)
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Rate of linear convergence

x
t+1 � x

⇤ = (xt � ⌘H(xt � x
⇤))� x

⇤ (6)

= [I � ⌘H](xt � x
⇤) = (I � ⌘H)t(x0 � x

⇤) (7)

e
t+1  kI � ⌘Hkt e0 with e

t = kxt � x
⇤k (8)

f (x)� f (x⇤) =
1

2
(x � x

⇤)TH(x � x
⇤) for any x (9)

Proof
1

2
(x � x

⇤)TH(x � x
⇤) =

1

2
x
T
Hx +

1

2
(x⇤)THx⇤ � x

T
Hx

⇤
| {z }
�xT g

recall Hx⇤ = �g (10)

= f (x)�
✓
1

2
(x⇤)THx⇤ + g

T
x
⇤
◆

(11)

Hence,

f (x)� f (x⇤) =
1

2
(x0 � x

⇤)T (I � ⌘H)2tH(x0 � x
⇤) (12)

because H(I � ⌘H) = (I � ⌘H)H (13)
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Choice of ⌘

For convergence, we want to control the maximum eigenvalue of (I � ⌘H). Let m,M the min,
max singular values of H.

minimize⌘ max�2[m,M]|1� ⌘�| (14)

We obtain 1
⌘⇤ = M+m

2 or

⌘⇤ =
2

M +m
(15)

For this ⌘⇤ we obtain

�⇤ ⌘ �max (I � ⌘H) =
M �m

M +m
(16)

This value is always in [0, 1]. Denote by  = M

m
the condition number of H; �⇤ approaches 1

when  is large.
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Newton-Raphson “rounds” the surface of f around minimum

I If we take H = I , then � = 0, meaning that the first order convergence is infinitely fast
(super-linear convergence).

I How can we make H = I? We transform the variable x by

x = H
�1/2

z, z = H
1/2

x (17)

Then f (z) = 1
2kzk

2 + g
T
H

�1/2
z + c and the new Hessian is I .

Let us look at the gradient descent in z.

rz f (z) = z + (H�1/2)T g (18)

z
t+1 = z

t � ⌘(zt + (H�1/2)T g) (19)

x
t+1 = H

�1/2
z
t+1 = (1� ⌘)H�1/2

z
t � ⌘H�1

g (20)

= (1� ⌘)xt � ⌘r2
x f (x

t)rx f (x
t)

| {z }
Newtonstep

(21)

I Hence the Newton step is a gradient step in the transformed coordinates z.

For a symmetric A � 0, B = A
1/2 is a matrix for which B

T
B = A holds; A1/2 is not unique.

We have also A
�1 = (BT

B)�1 = B
�1(BT )�1. Exercise Prove that B is non-singular when A is

non-singular; find the equivalence class of all B which are the square root of some A.
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Gradient descent for Least Squares Loss

Consider linear regression, with f (✓) ⌘ LLS (✓) =
1
2n ky �X✓k2 with d > n. Let XXT 2 Rn⇥n be

the kernel matrix and H = 1
n
XTX the covariance matrix.

f (✓) =
1

2
✓TH✓ �

1

n
y
TX

| {z }
g

✓ +
1

2n
y
T
y (22)

I We start from ✓0 = 0.
I We don’t assume the solution is unique. In other words, H may be singular.
I In particular, note that for d > n, H is singular, but K is invertible w.l.o.g. when the

system X✓ = y has a solution (and the system has an infinite number of solutions).
I For any ✓⇤ satisfying y = X✓⇤ and for some iterate ✓t we have

✓t � ✓⇤ = (I � ⌘H)t(✓0 � ✓⇤) (23)

✓t = [I � (I � ⌘H)t ]✓⇤ (24)
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The GD path

I Now on the GD path (which is deterministic given X)

rf (0) = g =
1

n
XT

y (25)

✓1 = 0� ⌘rf (0) = �⌘
1

n
XT

y (26)

Thus ✓1 is a linear combination of the rows of X (i.e. of the data points).
I By induction, ✓t for any t is a linear combination of the rows of X, hence

✓t = XT↵t , with ↵t 2 Rn (27)

I Since the gradient is non-zero whenever y 6= X✓, the GD algorithm converges to a point1

where y = X✓ = XXT↵.
I When K is invertible, let ↵⇤ = K

�1
y ; then ✓⇤ = XT↵⇤ is the limit of GD.

1This is informal. What we can say that when t is su�ciently large, X✓t = XXT↵t is arbitrarily close to y .
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✓⇤ is the minimum norm solution of X✓ = y

I To prove this, we must use convex duality.

Primal: inf
✓

1

2
k✓k2 s.t. X✓ = y , Dual: sup

↵
inf
✓

1

2
k✓k2 + ↵T (y � X✓) (28)

I Solving the optimization over ✓ as a function of the parameter ↵ we obtain ✓ = XT↵.
I We replace ✓ in (28) to obtain

sup
↵

↵T
y �

1

2
↵T

K↵ (29)

This is a concave function with optimum ↵⇤ = K
�1

y Yes, we get the same ↵⇤ from the
previous page!

I Finally, the solution to the Primal problem is ✓⇤ = XT↵⇤ = XT
K

�1
y , the solution

obtained by Gradient Descent!

Note that ✓⇤ above is not the OLS solution. In OLS, we minimize residuals norm, here we
minimize the ✓ norm.
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Lecture VII – Wide multilayer networks and the Neural Tangent

Kernel (NTK)
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mmp@stat.washington.edu
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Notation

I Neural network predictor f (x ; ✓), where x 2 Rd

I For each layer l = 1 : L of dimension ml , with x0 ⌘ x , and zL ⌘ f (x)

z
l+1 = W

l+1
x
l + b

l+1
x
l+1 = �(zl+1) (1)

Here xl,l+1, zl+1, bl+1 are column vectors Wl+1 is a ml+1 ⇥ml matrix, �() is the
non-linearity/activation function.

I The weights

W
l

ij
= �ww

l

ij
/
p
ml , b

l

j
= �b�

l

j
, Known as NTK parametrization (2)

I Parameter vector ✓ = vector{w1:L,�1:L} 2 Rp initialized i.i.d. ⇠ N(0, 1)
I �w,b are fixed hyper-parameters, 1/

p
ml normalizes the expected norm of Wl columns

I Loss L(y , f )

I We want to analize the behavior of this network f () at initialization and during training,
when m1:L very large

I Three approximations help analysis
(A1) continuous time training, called gradient flow
(A2) m1:L ! 1 in the wide limit, we can apply the Central Limit Theorem (CLT), and Gaussian

Processes
(A3) parameters ✓ do not change much during training, i.e. ✓t � ✓0 is small


