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The Neural Tangent Kernel (NTK)

Wide networks and Gaussian Processes

The NTK is constant during training
Example — regression and Ly,g

Wide and deep networks and classification
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Notation

» Neural network predictor f(x;0), where x € R4
» For each layer / = 1 : L of dimension my, with x0 = x, and z! = f(x)

ZI+1 — Wl+lxl+b/+1 X/+1 — ¢(Z/+1) (1)

Here x/:/*1 z/+1 pl*+1 are column vectors W/t is a my, 1 x m; matrix, ¢() is the
non-linearity /activation function.

» The weights

W,-JI- = awwé-/\/m,, bjl- = UbB}, Known as NTK parametrization (2)
> Parameter vector = vector{w!, gL} € RP initialized i.i.d. ~ N(0,1)
>

ow,b are fixed hyper-parameters, 1/,/m; normalizes the expected norm of W! columns
Loss L(y, f)

v

\4

We want to analize the behavior of this network f() at initialization and during training,

when my.; very large

Three approximations help analysis

(A1) continuous time training, called gradient flow

(A2) my.. — oo in the wide limit, we can apply the Central Limit Theorem (CLT), and Gaussian
Processes

(A3) parameters 6 do not change much during training, i.e. 6; — 6q is small

v

x
E
2
=
2
H
£
H
o
g
@
=
2
7
S
3
2
g
8
s
%
]
s
s
£
5
=




o- (W)
2 (%) e, 2w N (0 )
" Kl BN e
"y o wids riur
2y AL~ (o) pulfl
goMt

N0
e 2) 20 6P on X






x
E
2
T
H
£
H
o
g
o
=
2
7
S
3
H
g
8
s
B

The Gradient Flow

> Assume training by gradient descent on £ = > Ly f(xi))
> The gradient of £

A oL i i
Vol = ZE(Y JF(xX0)Vof(x',0) = VofpViLlp  ERP 3)

where V/Lp = [2£(y/, F(x/; 0))]i=1.0 € R", Vifp = [Vof(x), 0)]ic.n € RPXT
> Assume (A1) gradlent descent with infinitezimal time steps. In other words, the W
parameters evolve by an ordinary differential equation |

Q_: . i = —@vfﬁt €RP ? vaé:(b l(4)
. fr = jil % % = &V__a_)i:é €R ‘]l/ (5)
’F —F(X) --=3 fp = nngz )T ‘7fED € RP (6)

=t Gram
5
> G = ngDTVm‘D = k(X, X) is a Gram matrix! mmx

> Therefore, we define the Neural Tangent Kernel (NTK) by

K(x,x") = Vof(x; G)Tng(X 0) (7)

ll{ [/4()( ﬂ,)]“"fn L—W&f )n & tpace



Gradient flow and NTK — summary

0 = -nVefpViLlnp eRP
fo = —nGV¢L €RP
K(x,x") = Nof(x)TVef(x')

—

» fx, Vgfx, G depend only on the inputs X, 6
> Vf%depends only on the correct outputs Y, and predicted outputs, i.e. on Y and 6

» This holds for any predictor! So what is special about neural networks?
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Gradient flow and NTK — summary

é = —nVp fbVelp € RP
fo = —nGV¢L ERP
K(x,x") = Vof(x)TVef(x')

» fx, Vgfx, G depend only on the inputs X, 6
» VL depends only on the correct outputs Y, and predicted outputs, i.e. on Y and 6

» This holds for any predictor! So what is special about neural networks?
> First, we will analyze x for_very wide neural networks with random parameters (e.g. at

initialization) = 5
> ThI we will analyze what happens during training under assumption (A3)

4:L Y.
(my, =0 >~ At ehnaiit
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Wide NN's Gaussian Process (GP)

» This is about fy, a NN initialized with Gaussian independent parameters. For simplicity, we
denote it as f.

> Assume 9L fixed, only WL, bt random as in (72)
> Recall f(x) = WExE=1(x) + bt for any x with xt=1 € R™L

» f(x) = sum of m;_; i.i.d. random variables, hence f(x) ~ Normal by CLT, for m;_; large
» Randomness is over weights WL, bL111
» We have E[f(x)] =0 and

Ugv L—INT( L—1, 2 __ L
——(x7) (x') Hop =k (x

mp_1
(8)

Cov(f(x), f(x")) = E[(WExE 1 ph) (W) =1 b)) =

where xt=1 (x/)E=1 € R™.~1 are the outputs of the (L — 1)-th layer for inputs x, x’
kL is a positive definite kernel Exercise Prove this.
f(x) is a random function of x

» The distribution of f(x) defined as above, is called a Gaussian Pocess

» More generally, it can be shown [Jacot, Gabriel, Hongler, NeurlPS 2018] that, when all 0
parameters are sampled as in (??), fy(x) ~ GP(0, ")

Q1 What is the kernel kb of this GP
Q2 This is all nice, but 6 changes during training. What can we say about 0;, f; after training?
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From (8), for layer / =1 : L we have

0_2
R, x') = ElZ]()z(X)] = ﬁ(X’_l)T(X’)’_1+U§ 9

with x/=1 = #(z/~1). Note also that zj’ are i.i.d. so it does not matter which j we choose.

2
In particular, k(x,x") = %"IVXTX, + o2 is deterministic
...and &' is random for / > 1.

However, when m; — oo, m(i: (xX=H)T(x")=1 — E[#]

More specifically, this expectation can be written as
E[+] = //d)(z)(b(z’)Normal({ z ];o, Kl ) dzdz. (10)

In the above z, z’ represent the z/=1(x), z/~1(x’) variables, sampled from the level /
Normal distribution, which has covariance given by x/~1, namely

-1 -1 /
-1 _ K (sz) Kk (va)

Hx,x’ - |: ,{I—l(X/’X) HI—1(X/7X/) . (11)
Hence, the limit of &/(x,x’) when my.; — oo, is a deterministic kernel for all /.

[Jacot, Gabriel, Hongler, NeurlPS 2018] derived this recursion (next page).



Q1: A recursive expression for the Neural Tangent Kernel

[Jacot, Gabriel, Hongler, NeurlPS 2018]
» | fixed, m — oo
» Simplified expression for mg,; = m, oy = op =1
» Then the NTK x = k! is defined recursively by layer

ot = sty Tl = %XTX'H (12)
KOG X)) = k(G x)EH T (x, X)) 4+ 2 (x, x), (13)
with s (x,x") = ng,), (14)

S (x, x') = ngjw,), (15)

i Le = E[¢(X)8(X)with(X, X") ~ N(0, | X X) Z(X’X/)(]]6)

Y(X, X)) (X', X"

> In other words, at level / +1, X = x!, X" = (x")! are sampled from a GP with kernel ¥/,
and T+ (x, x"), £!*1(x, x") represent their (scalar) covariance after passing through the
non-linearities ¢, ¢’ (where ¢’ is the derivative of ¢)
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Summary so far

»> Now, we understand the random intialization of wide networks, with L layers.

fo ~ GP(0, kb) (17)

L

: 2
where k- is a kernel that depends only on ¢ (and O’bﬂw)

What next? =

» Analysis of training by linearization( /¥

» Then, the NTK limit for L — oo and its relevance for classification and regression
(w )



The Linearized Network i |/ et_“@‘jﬁ m"?

‘ Notation: 6o ¢, fo, = parameters, predictor at times 0, t

» Here we use (A3), the assumption that the parameters 6 change little during training.
Extensive evidence supports this assumption.

» First order Taylor expansion of f; around fj

_ ~ ptfedned
) = h0)+Voh()T (0 —00) ¥ (18)
non-linear in x, linear in 6
Vofi = Ve (19)
K, x") = Vofh(x)TVefn(x") constant during training (20)
Gy = Kxx = NTE 0€ fwdam m (21)
0 = —nVeh(X) VLY, £ (x)) (22)
L T .
fi(x) = —n K(x,X)Go VL(Y, £ (x)) (23)
—_———

eepends on 6g l




NTK during training — empirical evidence

0.40 n=500,t=0 0.4 n=50

n=500, t = 200 n=1000

n=10000, t=0 — n==,Py -
035 J n=10000, t = 200 -== n==,{Pi,Pa}

0.2

0.0

fa(sin(y), cos(y))

Figure 1: Convergence of the NTK to a fixed limit Figure 2: Networks function fy near convergence
for two widths n and two times ¢. for two widths n and 10th, 50th and 90th per-
centiles of the asymptotic Gaussian distribution.
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Linearized Network dynamics for Ly

» For example, for Lrs(y, f) = %(f —¥)?, V¢Lrs(f,y) = f — y. In this case, equations
(??) are a linear system and have an analytic solution.

b= = —Voh(X)7 G5! (1-e %) (f(X)-Y) (24)
flinx) = (/ - e—ﬂcof) Y + e~ "%t fy(X) (25)
finx) = k(x,X)TG5t (/ - e*"Gof) Y + fo(x) — k(x, X) T Gyt (/ - e*"Gof) f(626)
w(x) v(x)
Notes:
» if Gy > 0 then e~ "7%! — 0 for t — co
> in discrete time t = 0, 1, 3, .. . replace e°* with (1 — a)".

Sketch of proof: In(1 — a)* = tIn(1 — a) ~ t(—a) for a small; therefore e " ~ (1 — a)".
> () = H(x) + rlx, X)T 65" (1= e7I0) (Y = (X))

Exercise Prove (?7?) from (??)



Wide and deep neural networks for classification — Basic quantities and
assumptions

[Radhakrishnan, Belkin, Ulher, 2022]

» This paper studies the limits of wide neural networks m; — oo for all / =1 : L when the
depth L — oo

» It is already known that for regression L — oo is NOT OPTIMAL

» Since the NTK depends only of the activation function ¢, the limit shall only depend on ¢
as well.

» In particular, the limit depends on ¢ only through the following

A = E[¢(2)] when z ~ N(0,1)
A = E[¢/(2)] when z ~ N(0, 1)

> Classifier f(x) = lim; 00 sgnYG1xb(X, x) with G = [kE(x', %)]; j=1:n-

» Additional assumptions
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» Data X C Si, vectors of norm 1 with all entries > 0.
» Simplifying assumptions on NTK parameters (e.g. o, = op = 1)

“K(’ 95@ L—-)OO

in{ormﬂ Jf;chmeld'




Case A # 0: Networks implement majority vote

Theorem (Proposition 1 in [Radhakrishnan, Belkin, Ulher, 2022])

If there is a function 0 < ¢(L) < oo so that

L / L
Limw % = ¢ >0 forany x # x', and LI_l)rr;o K::((XL7)X) # c1, (27)
then
n
lim f(x) =sgn» y'  MAJORITY CLASSIFIER (28)
L—oo i

» What ¢'s satisfy theorem? RelLU, all ¢ with B # 1.



Case A= A’ = 0: Networks implement 1-nearest neighbor

Theorem (Theorem 3 in [Radhakrishnan, Belkin, Ulher, 2022])

Tl Tyl

Given x, assume w.l.0.g. that x' x* = maxj—1., X
L i
- R (X))
| = 0. 29
i90o rL(x, x1) (29)
and
lim f(x) = sgny? 1-nn (30)
L— oo




Case A =0, A’ # 0:) Networks implement singular kernel classifier

Theorem (Theorem 1 in [Radhakrishnan, Belkin, Ulher, 2022])

wh,x") _ R(lx = x|])
lim = : (31)
150 (APE(L+ 1) llx — x|
with o = —4:252: and R() > 0, bounded, and R(u) > & around 0.
> if a >0, R‘,‘(HXX,H(U) is singular kernel

> Computatlonally not a problem if data x1" distinct, Gy is well defined
> If x = x', set f(x) =



Optimality of singular kernel classifier

Theorem (Theorem 2 in [Radhakrishnan, Belkin, Ulher, 2022])
IFA=0, A #0 -m- hen lim;_, o, f(x) is Bayes-optimal.
» What activations ¢ satisfy this theorem?

3
¢opt( ) o 23—/42 + \/W

1
6 2d/4

z

. (32)

d=2 A=-1.5e-13 A'=0.71 B=2 a=2

d=3 A=-5.6e-06 A'=0.59 B=2 a=3
40‘ y

for d > 2



Optimal singular kernels for d = 4, 8, 16, 32

d=8 A=-9.6e-06 A'=0.25 B=2 o=8

40

30

20

10

0

-10

-20

80

60

40|

20

0

5 -4 -3 -2 -1 0 1 2 3 4 5

d=4 A=-7.3e-06 A'=0.5 B=2 a=4

d=16 A=-6.1e-06 A'=0.062 B=2 =16

-30 -20 -10 0 10

30

25

20

15

10

5 -4 -3 -2 -1 0 1 2 3 4 5

d£32 A=-1.2e-17 A'=0.0039 B=2 a=32

-500  -400 -300 -200 -100 0



Summary

(@ z2~N(0,1) (b) Regression Classification

A=E[p(2)] I

Infinitely Wide and Deep Classifiers

2 =B -
o =
= z
AF#0 A=0 &
— TestEx. .+ TestEx.
Train. Ex. Train. Ex.
5 4 ! N ] :
A#0 R R
I © Data Distribution  1-Nearest Neighbor
A\ Optimlingulr Kernel =
WajorityVote Kernel
Majority Vote Classifiers 1-Nearest Neighbor Classifiers | | Singular Kernel Classifiers S ioaree el
® @
(Not Optimal) (Not Optimal) (include Optimal Classifiers) ~ P B
" =% Training Examples.
| @ : Test Examples.
Examples: 8 Majority Vote
] E C]
ReLU 2% Hermite Polynomial Cubic Polynomial
2-1 28+ (V6-3)z ®|
#(z) = max(0, z) ool o= B (V6-3)
) o) =7 #(a) I T

0

lz — 2|

b when A # 0, lim;_. o k5(x,x") = 0 for x # x’, and f(x) = 0 is vanishingly small (useless
for regression), but sgnf(x) can be optimal for classification

c Singular kernel oo > d,a < d, majority vote kernel, and 1-nn kernel




Limits of some activation functions

¢°P' Bayes classifier
ReLU majority vote

q 5 1 1 .
sigmoid e 2 1-nearest neighbor
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