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Prediction problems by the type of output

The “learning” paradigm and vocabulary

The Nearest-Neigbor and kernel predictors

Linear predictors
Least squares regression
Linear Discriminant Analysis (LDA)
QDA (Quadratic Discriminant Analysis)
Logistic Regression
The Perceptron algorithm

Classification and regression tree(s) (CART)

The Naive Bayes classifier

Reading HTF Ch.: 2.3.1 Linear regression, 2.3.2 Nearest neighbor, 4.1–4 Linear classification,
6.1–3. Kernel regression, 6.6.2 kernel classifiers, 6.6.3 Naive Bayes, 9.2 CART, 11.3 Neural
networks, Murphy Ch.: 1.4.2 nearest neighbors, 1.4.4 linear regression, 1.4.5 logistic regression,
3.5 and 10.2.1 Naive Bayes,4.2.1–3 linear and quadratic discriminant, 14.7.3– kernel regression,
locally weighted regression, 16.2.1–4 CART, (16.5 neural nets), Bach Ch.:
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The “sign trick” for transforming a regressor into a classifier

The sign function sgn(y) = y/|y | if y 6= 0 and 0 i↵ y = 0 turns a real valued variable Y into a
discrete-valued one. This function is used to allow one to construct real-valued classifiers. In
these classifiers, the model f (x) is a real-valued function, and the prediction ŷ is given by
sgn(f (x)).
Note that in a vanishingly small fraction of cases, when the value of f (x) is exactly 0, no label
will be assigned to the input x .
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Decision regions, decision boundary of a classifier

Let f (x) be a classifier (not necessarily binary)

I f (x) takes only a finite set of values
I The decision region associated with class y = the region in X space where f takes value

y , i.e. Dy = {x 2 Rd , f (x) = y} = f �1(y).
I The boundaries separating the decision regions are called decision boundaries.

I For a binary classifier, we have two decision regions, D+ and D�. By convention f (x) = 0
on the decision boundary.

I For binary classifier with real valued f (x) (i.e ŷ = sgnf (x)) we define
D+ = {x 2 Rd , f (x) > 0}, D� = {x 2 Rd , f (x) < 0} and the decision boundary
{x 2 Rd , f (x) = 0}
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