
M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

1

Lecture Notes III – Neural Networks

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

October, 2022

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

2

Two-layer Neural Networks

Multi-layer neural networks

A zoo of multilayer networks

Reading HTF Ch.: 11.3 Neural networks, Murphy Ch.: (16.5 neural nets), Bach Ch.: –, Deep
Learning Book (Goodfellow, Bengio, Courville) 6.1-4, ResNet 7.6, ConvNet 9., Autoencoders
14.1, Dive Into Deep Learning 4.1-4.3.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

3

Two-layer Neural Networks

I The activation function (a term borrowed from neuroscience) is any continuous, bounded
and strictly increasing function on R. Almost universally, the activation function is the
logistic (or sigmoid)

φ(u) =
1

1 + e−u
(1)

because of its nice additional computational and statistical properties.
I We build a two-layer neural network in the following way:

Inputs xk k = 1 : n
Bottom layer1 zj = φ(wT

j x) j = 1 : m, wj ∈ Rd

Top layer f = φ(βT z) β ∈ Rm

Output f ∈ [0, 1]
In other words, the neural network implements the function

f (x) =
m∑
j=1

βjzj =
m∑
j=1

βjφ(
m∑

k=1

wkjxk) ∈ (−∞,∞) (2)

Note that this is just a linear combination of logistic functions.

1In neural net terminology, each variable zj is a unit, the bottom layer is hidden, while top one is visible, and the units in
this layer are called hidden/visible units as well. Sometimes the inputs are called input units; imagine neurons or individual
circuits in place of each x, y, z variable.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

4

Output layer options

I linear layer as in (2) f =
∑

j βjzj
I logistic layer: in classification f (x) ∈ [0, 1] is interpreted as the probability of the + class.

f (x) = φ

 m∑
j=1

βjzj

 = φ

 m∑
j=1

βjφ(
∑
j

wkjxk)

 (3)

I softmax layer in multiway classification

The softmax function φ(z) : Rr → (0, 1)r

φk (u) =
euk∑m
j=1 e

uj
(4)

I Properties
I ∑m

j=1 φj (u) = 1 for all u
I for uk � uj , j 6= k φk (u)→ 1.

I derivatives
∂φj
∂uk

= φkδjk − φjφk

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

5

Generalized Linear Models (GLM)

A GLM is a regression where the “noise” distribution is in the exponential fami ly.

I y ∈ R, y ∼ Pθ with
Pθ(y) = eθy−lnψ(θ) (5)

I the parameter θ is a linear function of x ∈ Rd

θ = βT x (6)

I We denote Eθ[y] = µ. The function g(µ) = θ that relates the mean parameter to the
natural parameter is called the link function.

The log-likelihood (w.r.t. β) is

l(β) = lnPθ(y |x) = θy − ψ(θ) where θ = βT x (7)

and the gradient w.r.t. β is therefore

∇β l = ∇θ l∇β(βT x) = (y − µ)x (8)

This simple expression for the gradient is the generalization of the gradient expression you
obtained for the two layer neural network in the homework. [Exercise: This means that the
sigmoid function is the inverse link function defined above. Find what is the link function that
corresponds to the neural network.]

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

6

Hidden layer options

I sigmoidal functions φ, tanh
I hinge functions RELU = max(u, 0), softplus = ln(1 + eu)

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

7

Multi-layer/Deep neural networks

The construction can be generalized recursively to arbitrary numbers of layers.
Each layer is a linear combination of the outputs from a previous layer (a multivariate
operation), followed by a non-linear transformation via the logistic function φ. Let
x ≡ x(0), y ≡ x(L), m0 = d ,mL = dim y (typicall 1) and define the recursion:

x
(l)
j = φ

(
(w

(l)
j)T x(l−l)

)
, for j = 1 : ml (9)

The vector variable x(l) ∈ Rml is the ouput of layer l of the network. As before, the sigmoid of
the last layer may be omitted.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

8

Are multiple layers necessary?

I 1990’s: NO
I 2000’s: YES

I A theoretical result

Theorem (Cybenko,≈1986)

Any continuous function from [0, 1]d to R can be approximated arbitrarily closely by a linear
output, two layer neural network defined in (2) with a sufficiently large number of hidden units
m.

I A practical result

Deep Learning
Deep learning = multi-layer neural net

I So, what is new?
I small variations in the “units”, e.g. switch stochastically w.p. φ(wT x in) (Restricted Bolzmann

Machine), Rectified Linear units
I training method stochastic gradient, auto-encoders vs. back-propagation (we will return to this

when we talk about training predictors)
I lots of data
I double descent

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

9

Resnets – Residual networks

Idea What is the “simplest” input-output function? f0(x) = x
I Hence, a NN layer should learn the difference w.r.t. identity f0

xl+1 = Blφ(Wlxl)+xl (10)

Generalization DenseNet
I Layer l gets inputs from l − 1, l − 2, . . .

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

10

ConvNets – Convolutional Networks

I discrete convolution let f , g : Z→ R
Z = all integers

(f ∗ g)(t) =
∑
i∈Z

f (t − i)g(i) (11)

I convolution as Toeplitz matrix vector multiplication

I in ConvNets, Z is replaced by 1 : m, f is padded with 0’s
I g is a (smoothing) kernel
I i.e. g(i) = g(−i) > 0 and | supp g | = 2s + 1� m,

∑
i g(i) = 1

I Convolutional layer f ← x input, g ← w weights, s output

s(t) =
t+s∑

i=t−s

wi s(t − i) (12)

I Pooling

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

11

from www.deeplearningbook.org Chapter 9

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

12

Autoencoders

Question How to learn from data without outputs y?
This is unsupervised learning, not prediction

Idea Learn a low dimensional/sparse representation h(x) of data x ∈ Rd

h(x) ∈ Rm, with m < d f (h(x)) ≈ x! (13)

I Optimize L(x , f (h(x)))

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

13

Variations

I If f linear, LLS , then we “learn” PCA
I Denoising autoencoder

I Add noise to x input, predict true x

x̃ ∼ C(|x), min L(x , f (h(x̃))). (14)

I Sparse autoencoder
min L(x , f (h(x)) + Ω(h) (15)

Ω is regularization that makes h sparse

I

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

14

Transformer networks: Why we need attention

I mapping sequences to sequences (structured prediction)
I both long and short range dependencies
I range depends on input sequence

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

15

Basic architecture

I inputs x1, x2, . . ., outputs y1, y2, . . . from discrete set
(e.g. words in English, Chinese)

I continuous internal representations
I embedding modules map input or output space to

continuous representations (prelearned)

I recurrence/auto-regression yt depends on x1:t+k and
y1:t−1

I encoder, decoder, encoder-decoder modules
(which use attention)

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

16

How to implement attention

I queries, keys and values
I all learned
I Idea: query q matches key k results in selecting the corresponding value v
I q depends on current context, k depends on v
I q, k ∈ Rdk

I Q, K , V matrices of queries, keys, values

A(Q,K) = softmax(
1
√
dk

QKT) (16)

I Aq: selects value v for the best matching key for each q

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

17

Transformer architecture

I D,E,DE modules: each have N = 6 layers of Attention + Feed-forward (FFW) networks of
same d = 512

I FFW, A are ResNets
I FFW is W2 max(W1x , 0), W1,2 with identical rows
I A is multihead attention

I h = 8 parallel attention layers, concatenated

I advantages – implements long distance dependencies with fixed (small) number layers, and
parallel computations

M
ar
in
a
M
ei
la
:
L
ec

tu
re

II
I

18

Attention mechanism in Transformer

I encoder-decoder
I queries from previous decode layer
I keys, values from current encoder output

I encoder – self-attention (=previous
encoder layer)

I decoder
I self-attention, masked
I only from outputs before current step

	Two-layer Neural Networks
	Multi-layer neural networks
	A zoo of multilayer networks

