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Prediction problems by the type of outpuV
The “learning” paradigm and vocabulary®”
The Nearest-Neigbor and kernel predictors Qe

Linear predictors
Least squares regression
Linear Discriminant Analysis (LDA)
QDA (Quadratic Discriminant Analysis)
Logistic Regression
The PERCEPTRON algorithm

Classification and regression tree(s) (CART)

-
QThe Naive Bayes classifier)

Reading HTF Ch.: 2.3.1 Linear regression, 2.3.2 Nearest neighbor, 4.1-4 Linear classification,
6.1-3. Kernel regression, 6.6.2 kernel classifiers, 6.6.3 Naive Bayes, 9.2 CART, 11.3 Neural
networks, Murphy Ch.: 1.4.2 nearest neighbors, 1.4.4 linear regression, 1.4.5 logistic regression,
3.5 and 10.2.1 Naive Bayes,4.2.1-3 linear and quadratic discriminant, 14.7.3— kernel regression,
locally weighted regression, 16.2.1-4 CART, (16.5 neural nets), Bach Ch.:

Marina Meila: Lecture | Predictor zoo
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The Nearest-Neighbor predictor

»> 1-Nearest Neighbor The label of a point x is assigned as follows:
1. find the example x' that is nearest to x in D (in Euclidean distance)
2. assign x the label y', i.e

y(x) =y
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The Nearest-Neighbor predictor Wledfd'm)‘

»> 1-Nearest Neighbor The label of a point x is assigned as follows:
1. find the example x' that is nearest to x in D (in Euclidean distance)
2. assign x the label y', i.e.
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The Nearest-Neighbor predictor

»> 1-Nearest Neighbor The label of a point x is assigned as follows:
1. find the example x' that is nearest to x in D (in Euclidean distance)
2. assign x the label y', i.e

i

y(x) =y

» K-Nearest Neighbor (with K = 3,5 or Iarger)

1. find the K nearest neighbors of x in D: x1:+/k
2. P for classification f(x) = the most frequent label among the K neighbors
(well suited for multiclass)

P for regression f(x) = % > y' = mean of neighbors' labels

=3
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The Nearest-Neighbor predictor

»> 1-Nearest Neighbor The label of a point x is assigned as follows:
1. find the example x' that is nearest to x in D (in Euclidean distance)
2. assign x the label y', i.e.

=> y(x) =y

> K-Nearest Neighbor (with K = 3,5 or larger) - closs

1. find the K nearest neighbors of x in D: x1>"""'K oe .
2. P for classification f(x) = the most frequent label among the K neighbors ,le_u‘tcfa,‘d
(well suited for multiclass)
P for regression f(x) = % >

i

y! = mean of neighbors' labels \l/ .
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The Nearest-Neighbor predictor

»> 1-Nearest Neighbor The label of a point x is assigned as follows:
1. find the example x' that is nearest to x in D (in Euclidean distance)
2. assign x the label y', i.e.

yx) =y

> K-Nearest Neighbor (with K = 3,5 or larger)

1. find the K nearest neighbors of x in D: x1:*/k
2. P for classification f(x) = the most frequent label among the K neighbors
(well suited for multiclass)

P for regression f(x) = % > y' = mean of neighbors’ labels
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> No parameters to estimate! =2 'l( }5(}\5&”‘%(‘0 Ma%e"}

»> No training!

» But all data must be stored (also called memory-based learning I
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Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two
dimenstons as in Figure 2.1. The classes are coded as
a binary variable ( = 0, = 1) and then fit
by 15-nearest-neighbor averaging as in (2.8). The pre-
dicted class 1s hence chosen by majority vote amongst
the 15-nearest neighbors.



Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

1-Nearest Neighbor Classifier
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FIGURE 2.3. The same classification example in two
dimenstons as in Figure 2.1. The classes are coded as
a binary variable ( = 0, = 1), and then
predicted by 1-nearest-neighbor classification.



Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 2

Bayes Optimal Classifier

= KWH’% Wﬂ JQ"ﬁ(
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FIGURE 2.5. The optimal Bayes decision boundary
for the simulation example of Figures 2.1, 2.2 and 2.35.
Since the generating density is known for each class,
this boundary can be calculated exactly (Fxercise 2.2).



Kernel regression and classification Koknod Redictorc

> Like the K-nearest neighbor but with “smoothed” neighborhoods
» The predictor

F(x) = > Bib(x,x)y' (1)
i=1
where 3; are coefficients 'ZMK@L
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Kernel regression and classification

» Like the K-nearest neighbor but with “smoothed” neighborhoods
» The predictor
n
= > Bib(x,x")y’
i=1

where 3; are coefficients
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Kernel regression and classification

» Like the K-nearest neighbor but with “smoothed” neighborhoods
» The predictor

F(x) = D> Bib(x,x)y’ €3]
i=1

where 3; are coefficients
» Intuition: center a “bell-shaped” kernel function b on each data point, and obtain the
prediction f(x) as a weighted sum of the values y’, where the weights are 8;b(x, x')
» Requirements for a kernel function b(x, x")
1. non-negativity
2. symmetry in the arguments x, x”
3. optional: radial symmetry, bounded support, smoothness

» A typical kernel function is the Gaussian kernel (or Radial Basis Function (RBF))

b(z) o e=7/2 )

’
_lx=x'112

bp(x,x") o e 22 with  h = the kernel width 3)

)
8
R
g
=
3
2
a
@
'
8
S
&
]
2
5
5
2




. - .|
Regression example _\ )'\6
\*/'
A special case in wide use is the Nadaraya-Watson regressor @ %bc w
) . )
sr (), %@

R e I ey (== .

In this regressor, f(x) is always a convex combination of the y'’s, and the weigths are
proportional to by(x, x").
The Nadaraya-Watson regressor is biased if the density of Px varies around x.

I fe=2 WY
/5’ DS AW w (\L
BT 5 g -4
=1

£ 2% = condax Gow Irikakion

5 ; 20 for o ! T;/l [ K
wd Do, =1 NNV

)
S
R
g
=
3
2
o
@
'
@
S
&
]
2
5
5




Nadaﬂﬂﬁﬂ (/\/(U{'SOVD %&q&mﬂ Later (FYy! was < V'E'(m' 9P () )
R " £06) fuig P [ W ot Runckion dunty

roo{

S
Qhdote 7 weu date

Lo = 2w, § Y >0




Local Linear Regression

To correct for the bias (to first order) one can estimate a regression line around x.

1. Given query point x
2. Compute kernel by(x,x") =w; forall i =1,... N

3. Solve weighted regression ming g, Z,-d:l w; (yi — BUsd = 50)2 to obtain S, By
( B, Bo depend on x through w;)

4. Caleulate f(x) = BTx+ fo  «— Qalidated @ Apoiud )

Exercise Show that Nadaraya-Watson solves a local linear regression with fixed 8 = 0
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Kernel binary classifiers

» Obtained from Nadaraya-Watson by setting y' to +1.
» Note that the classifier can be written as the difference of two non-negative functions

f(x) o Zb(w)* > b(@) ®)

iyl=1 iyi=—1
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