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Stochastic gradient methods
Examples: Linear classification with hinge loss, Perceptron
Accelerated gradient

No gradient methods: Coordinate descent

Stopping descent algorithms

Reading HTF Ch.: –, Murphy Ch.: 8.5.2-3 Stochastic gradient descent, Bach Ch.:
2em For more advanced treatment Nocedal and Wrigth.
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Stochastic gradient descent (SGD) methods

[Optimization framework, minimize f over x]

SGD methods are the “cheap and slow [convergence]” methods which can however be very
useful. One should not confuse “theoretically slow” with “slow in practice” and on some
problems the former is true of the simpler methods but the latter is not. On other occasions,
these methods perform well because they make fewer assumptions about the smoothness of the
surface f (x).

I Typical algorithm: steepest descent methods with diminishing step size.
I Assumption: the gradient gk = ∇f (xk ) is computed with some error, that has 0 mean

and bounded variance.
I This is the case for fitting of a model to data.
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Stochastic gradient for Machine Learning: idea

[ML framework, minimize J or L̂ over parameters, (x, y) =data, f = predictor]

I Let Dn be an i.i.d sample of size n from an unknown distribution.
I Denote by L̂(θ) = − 1

n
lnP(y1:n|x1:n, θ) the negative log-likelihood to be minimized.

I Because the sample is i.i.d., L̂(θ) = − 1
n

∑n
i=1 ln p(y i |x i , θ). Since f is a sum, so will be

the gradient:

∇L̂(θ) = −
1

n

n∑
i=1

∂p(y i |x i ,θ)
∂θ

p(y i |x i , θ)
(1)

I If n is large (good from the statistical point of view) then the computation of (1) linear in
n (very costly).

I The SGD idea is to set

dk =

∂p(y i |x i ,θ)
∂θ

p(y i |x i , θ)
(2)

where (x i , y i ) is randomly sampled from Dn.
I Let PX be the true data distribution and P̂X the empirical distribution induced by the

sample Dn. Note that the direction dk satisfies EP̂ [dk ] = ∇L̂.
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[Optimization framework, minimize f over x]

This example points out that in Machine Learning

I the function f and its gradient ∇f are both expensive to evaluate, because they are are
sums over the potentially large sample size n

I therefore, we want to avoid not only the ∇2f computation, but also the ∇f computation
and even the line search which entails repeated evaluations of f

I on the other hand, evaluating a noisy version of the gradient is fast, because it involves
one (or a few) samples

Thus, SGD takes many imprecise steps, instead of few but very computationally demanding
precise steps. It remains to see if such a method can effectively find a minimum.
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Convergence of SGD

Theory It has been proved under various technical conditions1 that stochastic gradient
converges to the true optimum if

I the step sizes ηk satisfy∑
k

ηk =∞,
∑
k

(ηk )2 <∞ (the latter implies ηk → 0) (3)

I and the noise variance Var [dk ] is bounded.

Practically ηk ’s should decrease like 1
k

. Note however that typically in practice the decrease

needs to be very slow, almost constant e.g 1
b+k/c

with b, c large numbers.

1These results are best known under the name of Robbins-Munro theory of stochastic approximation.
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Variations and practicalities

I SGD with a subsample instead of single point (“old-fashioned” SGD). At each step k, take

a subsample D′ ⊂ D with size |D′| = n′ � n, compute dk as 1
n′
∑

i∈D′ ∇L(y i , ŷ i ). D′
must be a different subset at each time.

I n′ can be varied as the training progresses towards the optimum, from n′ small at the
start, to approach the optimum fast, to n′ large near the end, to reduce variance.

I When to use “modern” SGD and when to use “old-fashioned”? Rule of thumb:
I If you know that your function is λ-strongly convex, then use the modern algorithm with a fixed

K derived from λ.
I Otherwise, use old-fashioned.

I If the sample D is truly iid (if it is true e.g. that example i and i + 1 are independent)
then picking a random i can be replaced by chosing i sequentially

I On-line learning and streaming data Remarkably, SGD can naturally handle on-line
learning, i.e. situations where data come one by one, and are not stored but discarded,
after being used immediately to update the parameters.
In on-line learning, (x i , y i ) ∼ PXY , we would be optimizing the expected loss
L = EP [− ln p(Y |X , θ)], and d i would satify EP [d i ] = ∇L. Showing that the variance of
dk is bounded is no more difficult (or easy than in the finite sample case).

I Stochastic gradient and analog techniques are widely used in machine learning: training of
neural networks, reinforcement learning (the TD-λ and Q-learning procedures are
stochastic gradient methods), speedup of boosting.
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Modern results
[ML framework, minimize J or L̂ over parameters, (x, y) =data, f = predictor]

I Handling constraints If there are constraints θ ∈ A, we additionally assume that the

projection ΠAθ = argmin
θ′∈A

||θ − θ′|| can be computed efficiently (e.g. θ � 0).

I State of the art algorithms are very simple

Stochastic Gradient Descent (SGD)
Input λ ≤ λmin

(
∇2f (x∗)

)
, c > 1/2 a constant giving the step-size, [optional α ∈ (0, 1],

K=total number steps]
for k = 1, 2, . . .K

1. get dk :
1.1 sample a point x i at random from D OR pick x i sequentially from a random permutation of D
1.2 compute dk = ∇fθ(x i )

2. update θ:

θk+1 ← θk −
c

λk
dk (4)

3. if k > (1− α)K accumulate θ̄ → θ̄ + θk

Average

θ̄ ←
θ̄

αK
(5)

Output θ̄ (or optionally θK )

Remarks

I steps proportional to 1/k and averages the last α fraction of steps.
I Empirically it was observed that no averaging, i.e. θK itself, has also good convergence

properties, but (as expected) larger variance than θ̄.
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Example: Linear classification with hinge loss

[ML framework, minimize J or L̂ over parameters, (x, y) =data, f = predictor]

The following example is a classic in statistical learning. We will examine it in two formulation.
The first is an example of a problem where λ is known, and the SGD theory from above applies.

Problem setting
I y ∈ {±1} (binary classification)
I We fit the linear classifier

f (x) = wT x (6)

I Loss function = hinge loss

Lh(y , f (x)) =

{
0 if yf (x) ≥ 1
1− yf (x) if yf (x) < 1

= [yf (x)− 1]− (7)

Define margin of example x
z = yf (x) (8)

Under Lh an error is penalized linearly by how far f (x) is in the “wrong direction” to which
we add a penalty even for correctly classified examples if the margin yf (x) is below 1.

I using the hinge loss.
I Simplifying assumption (for now, will remove it when we study SVM): the data
D = {(x i , y i )}i=1:n are linearly separable, i.e. there exists a w∗ that classifies the sample
with no error. Note that in general this w∗ is not unique.
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Linear Support Vector Machine SGD training algorithm
The optimization problem is a regularized one:

J(w) =
1

n

∑
i

Lh(y i ,wT x i ) +
λ

2
||w ||2 (9)

with λ > 0 a regularization parameter chosen by the user. Note that the non-quadratic loss
term is linear (with unknown slope at w∗) and therefore the function J(w) is by definition
λ-strongly convex.
The stochastic part of the gradient is

∂Lh

∂w
=

{
y ix i if i “error′′

0 if i “correct′′
(10)

where “correct” means that y i f (x i ) > 1.

SGD for Linear SVM
Initialize with w0 = 0, w̄ = 0
Iterate for k = 1, 2, . . .K

1. Pick the next i in 1 : n
2. compute direction dk = λwk − 1[i ”error”]y

ix i

3. update

wk+1 = wk −
c

λk

(
λwk − 1[i ”error”]y

ix i
)

= wk (1− c/k) +
c

λk
y ix i1[i ′′error′′] (11)

4. average w̄ ← w̄ + wk+1

Output w̄/K
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The Perceptron Algorithm

[ML framework, minimize J or L̂ over parameters, (x, y) =data, f = predictor]

The second example is the Perceptron algorithm from Lecture 1. We show that it is a
simplified version of the previous algorithm.
There is no regularization, and the margin −1 is dropped from the hinge loss, hence we
optimize

J(w) =
1

n

n∑
i=1

[y iwT x i ]− (12)

If the data is linearly separable, the minimum value of J is known to be 0; what interests is the
(non-unique!) w that attains this minimum.

Perceptron Algorithm
Initialize w = 0
For k = 1, 2, . . .

1. pick a data point i , calculate f (i ) = wT x i

2. if i is a mistake (i.e. ykwT x i ≤ 0)

w ← w + y ix i (13)

until no more mistakes are made.
Output w
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It is easy to show Exercise Do it! that the Perceptron algorithm is a stochastic gradient descent
with constant step size.
This does not satisfy the SGD convergence conditions, but there is an alternate result2 that
guarantees (a form of) convergence. Exercise It makes sense to take w∗ to be the separator that

maximizes γ, since this gives the tightest bound. Find what this w∗ is and what the interpretation of γ

should be in this case. Assume that ||x i || = 1 for all i .

2From Lecture 1: Proposition The number of mistakes made by the Perceptron algorithm is bounded by 1
γ2 where

γ = minD
|(w∗)T xi |
||xi ||||w∗||

with w∗ any linear separator of the data.
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Accelerated gradient: the “heavy ball” method

xk+1 = xk − ηkdk + γk (xk − xk−1) (14)

I Applies to both standard and stochastic gradient methods, i.e.

dk =

 ∇f (xk ) gradient descent
noisy gradient SGD
∇f (xk + δk (xk − xk−1)) extragradient methods

(15)

I Setting the parameters
I In the extragradient3 methods, ηk , δk , γk are obtained by search (or knowledge about M,m)
I For other methods fix γk = γ ∈ (0.5, 1] OR use smaller γ early in the training and increase it to

near 1 when the steps become smaller.
I More intuition

I for ill conditioned problems M � m, the heavy ball “accumulates” the components of the step in
the correct direction

I for SGD, the heavy ball approximates the exact gradient

3Nesterov’s “optimal”, FISTA
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Diagonally scaled SGD: AdaGrad
[ML framework, minimize J or L̂ over parameters, (x, y) =data, f = predictor]

I In this algorithm, each component of the stochastic gradient has a different step size ηkj ,
and this is “learned” as well.

AdaGrad Algorithm
Input step size η
Initialize G1:n = 0 scaling parameters, w0 initial parameter

I for k = 1, 2, . . .
1. pick a point i from D
2. compute dk

3. update scaling on each dimension G k+1
j = G k

j + (dk
j )2 for j = 1 : n

4. take a step

wk+1 = wk +
η√
G k+1
j

dk (16)

5. update the average w̄k+1

I until stopping condition
Output w (or w̄) at last iteration

I Denote G = diag {G1, . . .Gn} In the algorithm, this G stands for G∗ =
∑k

t=1 d
t(d t)T

(which would require O(n2) storage). Note that the expectation
E [G∗] = kE [ddT ] = k(E [d ]E [d ]T + Var(d)). Hence the step size is asymptotically
proportional to 1√

k
.4

I If J contains a regularization term R(w) (e.g ||w ||2), the gradient of this term should not
be added to G . Note that this term of the gradient is not random, and does not depend
on the data.

4But there exists theory to show this still is convergent.
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Coordinate descent

I dk is always one of the coordinate axes uik . Hence xk+1 = xk + ηkuik .
I Note that line search is necessary, and that the minimum can be on either side of xk so ηk

can take negative values.

Convergence Theoretical and empirical results suggest that coordinate descent has similar
convergence rate as the steepest descent (i.e linear in the best case).
While in a general case coordinate descent is suboptimal, there are several situations when it is
worth considering

1. When line minimization can be done analytically. This can save one the often expensive
gradient computation.

2. When the coordinate axes affect the function value approximately independently, or (in
statistics) when the coordinate axes are uncorrelated. Then minimizing along each axis
separately is (nearly) optimal.

3. When there exists a natural grouping of the variables. Then one can optimize one group
of variables while keeping the other constant. Again, we hope that the groups are
“independent”, or that optimizing one group at a time can be done analytically, or it’s
much easier than computing the gradient w.r.t all variables simultaneously. This idea is the
basis of many alternate minimization methods, including the well known EM algorithm.
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Stopping descent algorithms

Paradigm

I What we would like is to stop when the error f (x∗)− f (x i ) or ||x∗ − xk || is “small
enough”. This is possible for special classes of functions, in particular for convex functions.

I In general, we stop when some other computable quantity is “small enough”, i.e smaller
than a tolerance tol .

Stopping conditions for Batch algorithms (non-stochastic)
I What not to do:

I stop when k = 100 (or any other pre-set number K)
I stop when ||∇f (xk )|| < tol Exercise Why?
I set tol <

√
εmachine ≈ 10−8

I What to do:

I The “poor man’s” stopping condition:

∣∣∣∣1− f (xk+1)

f (xk )

∣∣∣∣ < tol5

I The “pro’s” stopping condition: Newton step = ||∇2f (xk )−1∇f (xk )|| < tol .
Note: don’t compute it at every step (unless you are actually running Newton method),
but only once in a while, depending on n and what descent algorithm you are using.

5The | | are not necessary if the method you use guarantees f (xk+1) < f (xk ) but this is not always the case. Note also

that this fails if f (xk ) = 0 or changes sign. But it works well for loss functions as they are always positive.
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Stopping SGD

[ML framework, minimize J or L̂ over parameters, (x, y) =data, f = predictor]

I L is strongly convex, and lower bound on λ known. (Hence you are using “modern” SGD.)

I Fix K in advance by using the theorem E [||θ∗ − θk ||2] ≤ c′G2

λ2K2 (c′ is a function of c) and setting

tol2 > c′G2

λ2K2

I otherwise (old-fashioned SGD, with n′ = 1 or larger)

I every M iterations, where M is large enough, test if ||θ̄
k−θ̄k−M ||
||θ̄k ||

< tol
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