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Lecture Notes IV.l.2 — Simple analysis of gradient descent
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Rate of linear convergence

Newton-Raphson “rounds” the surface of f around minimum

Implicit bias of Gradient Descent

Reading HTF Ch.: —, Murphy Ch.: —, Bach Ch.: , Bach Chapter 5.2, 10.1
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Useful facts

Assume that our function f is quadratic, i.e

1
f(x) = EXTHX +g"x+c with H > 0. (1)
Then,
Vf(x) = Hx+g = H(x—x") (2)
V2f(x) = H (3)
x* —H'g, and Hx* = —g (4)
(5)

Gradient descent x'™! = xt — nVf(xt)
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Rate of linear convergence

xH—x* = (xt = pH(x! — x¥)) — x* (6)
[ = gH](x = x*) = (I — M) (< = x7) %
ettt < ||l —nH||te®  with ef = ||xt — x*|| (8)
f(x)—f(x*) = %(X—X*)TH(X—X*) for any x 9)
Proof
1(X—X*)TH(X —x*) = 1xTHX—&— E(X*)THX* — xTHx* recall Hx* = —g (10)
2 2 2 SN——
T
1 *\T * T %
= f(x)— E(x) Hx* + g’ x (11)
Hence,
) =) = 200 —x)T (1= nH)* GO — x°) (12)

because H(l —nH) = (I —nH)H (13)
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Choice of n

For convergence, we want to control the maximum eigenvalue of (I — nH). Let m, M the min,

max singular values of H.
minimize; max¢(m,m|1 — nA|

We obtain 7%* = Mim o

2
- 2
= M+ m
For this n* we obtain
M—m
/8* Eo'max(l_nH) = M+ m

(14)

(15)

(16)

This value is always in [0,1]. Denote by k = % the condition number of H; 5* approaches 1

when « is large.
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Newton-Raphson “rounds” the surface of f around minimum

> If we take H = /, then 3 = 0, meaning that the first order convergence is infinitely fast
(super-linear convergence).
» How can we make H = [? We transform the variable x by

x = H Y2z 7z = HY?x (17)

Then f(z) = %HZH2 +gTH=1/2z 4 ¢ and the new Hessian is /.
Let us look at the gradient descent in z.

Vif(z) = z+(H?)'g (18)
z1~+1 = Ft_ n(zt + (H—l/z)Tg) (19)
Xt = HTY2z4 o (1 - ) HY22t e (20)

= (1 — X = VEF(x)VAF(X) (21)

» Hence the Newton step is a gradient step in the transformed coordinates z.
A0 B=Al/? BTB=A Al/2
A=l = (BTB)~! = B1(BT)~! Exercise Prove that B is non-singular when A is
non-singular; find the equivalence class of all B which are the square root of some A.
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Gradient descent for Least Squares Loss

Consider linear regression, with f(0) = L;s(0) = 2—1n||y — X0||?> with d > n. Let XXT € R"%" be
the kernel matrix and H = %XTX the covariance matrix.

1 1 1
f0) = Z0THO— —yTX0+ —yTy (22)
2 n 2n
N——

g

> We start from 6% = 0.

» We don’t assume the solution is unique. In other words, H may be singular.

» |n particular, note that for d > n, H is singular, but K is invertible w.l.0.g. when the
system X6 = y has a solution (and the system has an infinite number of solutions).

» For any 0* satisfying y = X0* and for some iterate 0 we have

0t — 0 = (I —nH)° —06%) (23)
0" = [I— (I —nH)"o* (24)



The GD path

» Now on the GD path (which is deterministic given X)

1
g = Xy (25)

V£(0)

91

1
0—yVF(0) = —n=XTy (26)

Thus 6% is a linear combination of the rows of X (i.e. of the data points).
» By induction, 6t for any t is a linear combination of the rows of X, hence

0t = XTat, with of € R" (27)
> Since the gradient is non-zero whenever y # X6, the GD algorithm converges to a point!

where y = X0 = XXT q..
»> When K is invertible, let a* = K—ly; then 6* = XTa* is the limit of GD.
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1 This is informal. What we can say that when t is sufficiently large, X6t = xXTat is arbitrarily close to y.
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0* is the minimum norm solution of X8 = y

» To prove this, we must use convex duality.

1 1
Primal: ir;f§||9|\2 st. X0=y & Dual:supigf§||0||2 +a'(y —X6) (28)
«@

> Solving the optimization over 6 as a function of the parameter o we obtain 8 = X7 cv.
> We replace 6 in (28) to obtain

1
supa’y — —a’ Ka (29)
a 2

This is a concave function with optimum o* = K~y Yes, we get the same o* from the
previous page!

» Finally, the solution to the Primal problem is 8* = XTa* = XT K~ly, the solution
obtained by Gradient Descent!

Note that 6* above is not the OLS solution. In OLS, we minimize residuals norm, here we
minimize the 6 norm.
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