

Lecture 5

Basic conapts (Neural networks) -> after this chapter

HW1 posted Q1 - next Tue at 12:30 TB Posted - Kernel Ngression slides

Lecture II: Prediction - Basic concepts

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

October, 2022

Generative and discriminative models for classification

Generative classifiers Discriminative classifiers Generative vs discriminative classifiers

Loss functions Bayes loss

Variance, bias and complexity

Prediction Concepts

 $^{^{-1}}$ Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading

The "learning" problem

- Given
- \blacktriangleright a problem (e.g. recognize digits from $m \times m$ gray-scale images)
- a sample or (training set) of labeled data

$$\mathcal{D} = \{ (x^1, y^1), (x^2, y^2), \dots (x^n, y^n) \}$$

- drawn i.i.d. from an unknown P_{XY} model class $\mathcal{F} = \{f\}$ = set of predictors to choose from Wanted a predictor $f \in T$ that $\frac{h}{h}$ for $f \in T$ that $\frac{h}{h}$ for $f \in T$. • a predictor $f \in \mathcal{F}$ that performs well on future samples from the same P_{XY}
 - "choose a predictor $f \in \mathcal{F}$ " = training/learning
 - "performs well on future samples" (i.e. f generalizes well) how do we measure this? how can we "guarantee" it?

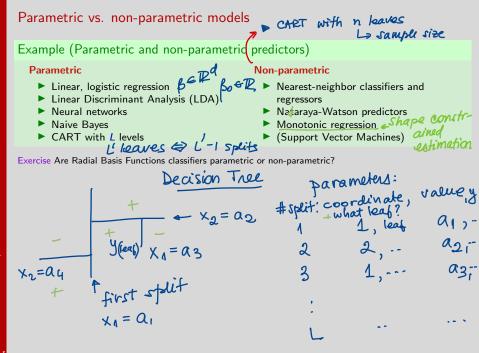
• (choosing \mathcal{F} is the model selection problem – about this later

A zoo of predictors

- Linear regression
- Logistic regression
- Linear Discriminant (LDA) gen
- Quadratic Discriminant (QDA)- generative
- CART (Decision Trees)
- K-Nearest Neighbors
- Nadaraya-Watson (Kernel regression) / for clamf.

. discriminative

- Naive Bayes gerv
- Neural networks/Deep learning —
- Support Vector Machines ____
- Monotonic Regression



A mathematical definition

A model class \mathcal{F} is parametric if it is finite-dimensional, otherwise it is non-parametric

In other words

= dim F

- When we estimate a parametric model from data, there is a fixed number of parameters, (you can think of them as one for each dimension, although this is not always true), that we need to estimate to obtain an estimate *f̂* ∈ *F*.
- The parameters are meaningful.
 E.g. the β_j in logistic regression has a precise meaning: the component of the normal to the decision boundary along coordinate *i*.
- The dimension of β does not change if the sample size N increases.

 Finfinite-dimensional iff there is no finite D so that F ≅ RD bijection

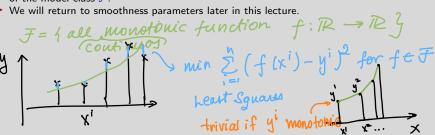
Non-parametric models – Some intuition

- When the model is non-parametric, the model class F is a function space.
- The \hat{f} that we estimate will depend on some numerical values (and we could call them parameters), but these values have little meaning taken individually.
- The number of values needed to describe \hat{f} generally grows with *n*. Examples In the Nearest neighbor and kernel predictors, we have to store all the data points, thus the number of values describing the predictor f grows (linearly) with the sample size. Exercise Does the number of values describing f always grow linearly with the sample size? Does it have to always grow to infinity? Does it have to always grow in the same way for a given **F**?
- Non-parametric models often have a smoothness parameter.

Examples of smoothness parameters K in K-nearest neighbor, h the kernel bandwidth in kernel regression.

To make matters worse, a smoothness parameter is not a parameter! More precisely it is not a parameter of an $f \in \mathcal{F}$, because it is not estimated from the data, but a descriptor of the model class \mathcal{F} .

We will return to smoothness parameters later in this lecture.



Generative classifiers

One way to define a classifier is to assume that each class is generated by a distribution $g_y(X) = P(X|Y = y)$. If we know the distributions g_y and the class probabilities P(Y = y), we can derive the *posterior probability* distribution of Y for a given x. This is

$$P(Y = y|X) = \frac{P(Y = y)g_y(X)}{\sum_{y'} P(Y = y')g_{y'}(X)} = \frac{P(Y = y)g_y(X)}{P(X)}$$
(1)

classifier (generative discriminative

The "best guess" for Y(X) (i.e. the decision rule) is

$$f(X) = \operatorname{argmax}_{y} P(Y = y | x) = \operatorname{argmax}_{y} P(Y = y) g_{y}(x)$$
(2)

(1) amounts to a likelihood ratio test for Y.

The functions g_y(x) are known as generative models for the classes y. Therefore, the resulting classifier is called a generative classifier. Examples: LDA, QDA, Naive Bayes.

- In contrast, a classifier defined directly in terms of f(x) (or P_{Y|X}), like the linear, quadratic, decision tree is called a discriminative classifier.
- In practice, we may not know the functions $g_y(x)$, in which case we estimate them from the sample \mathcal{D} .

ensative damifiers
$$y \in j \pm 1$$

 $z : nout P_{y|X+x}$
 $y = +1$ $P_{x|y=+1}$ distribution of examples from class +1
 $g = -1$ $P_{x|y=+1}$ distribution of examples from class +1
 $g = -1$ $P_{x|y=+1}$ $r_{x|y=+1}$ $r_{y} = -1$
 $P_{y=+1|x} = P_{y} [+1] P_{x|y=+1}(x)$
 $P_{y=+1|x} = P_{y} [+1] P_{x|y=+1}(x)$
 $P_{y=-1|x} = P_{y} [+1] P_{x|y=+1}(x)$
 $P_{y=-1|x} = P_{y=+1|x-x} = 1 - P_{y=+1|x-x}$
 $f(x) = P_{y=+1|x=x} - \frac{1}{2}$
 $(f(x) = Sgn f(x))$
Algorithm
1. Oboole model class for $P_{x|y=\pm 1}$
 $Q (x) = Sgn f(x)$
 $P_{y=x} = P_{y=x} = \frac{N_{x}}{N}$
 $f(x) = F_{y=x} = \frac{N_{x}}{N}$
 $f(x) = P_{y=x} = \frac{N_{x}}{N}$
 $f(x) = P_{y=x$

Generative classifier and the likelihood ratio

$$P(Y = y|X) = \frac{P(Y = y)g_y(X)}{\sum_{y'} P(Y = y')g_{y'}(X)} = \frac{P(Y = y)g_y(X)}{P(X)}$$

 $f(x) = \operatorname{argmax}_{y} P(Y = y | x) = \operatorname{argmax}_{y} g_{y}(x) P(Y = y)$

Likelihood Ratio test (for $y \in \{\pm 1\}$)

 $\frac{g_+(x)P(Y=+)}{g_-(x)P(Y=-)}$

Example (Fisher's LDA in one dimension)

Assume $Y = \pm 1$, $g_y(x) = N(x, \pm \mu, \sigma^2 I)$, i.e each class is generated by a Normal distribution with the same spherical covariance matrix, but with a different mean. Let $P(Y = 1) = p \in (0, 1)$. Then, the posterior probability of Y is

$$P(Y = 1|x) \propto p e^{-||x-\mu||^2/(2\sigma^2)} \quad P(Y = -1|x) \propto (1-p) e^{-||x+\mu||^2/(2\sigma^2)}$$
(3)

and f(x) = 1 iff $\ln P(Y = 1|x) / P(Y = -1|x) \ge 0$, i.e iff

$$\ln \frac{p}{1-p} - \frac{1}{2\sigma^2} [||x^2|| - 2\mu^T x + ||\mu||^2 - ||x^2|| - (2\mu)^T x - ||\mu||^2] = \left(\frac{2\mu}{\sigma^2}\right)^T x + \ln \frac{p}{1-p} \ge 0$$
(4)

Hence, the classifier f(x) turns out to be a linear classifier. The decision boundary is perpendicular to the segment connecting the centers μ , $-\mu$. This classifier is known as **Fisher's Linear Discriminant**. [Exercises Show that if the generative models are normal with different variances, then we obtain a quadratic classifier. What happens if the models g_y have the same variance, but it is a full covariance matrix Σ ?]

October, 2022

Discriminative classifiers - NOT GENERATIVE

- Defined directly in terms of f(x) or (almost) equivalently, in terms of the decision boundary {f(x) = 0}
- Can be classified by the shape of the decision boundary (if it's simple)
 - linear, polygonal, quadratic, cubic,...

The ambiguity of "linear classifier" and can be eithrgennative

Does it mean $f(x) = \beta^T x$ OR $\{f(x) = 0\}$ is a hyperplane ? Or discumulative If we talk about classification and the domain of x is \mathbb{R}^d , then "linear" refers to decision boundary. Otherwise it refers to the expression of f(x). Exercise Find examples when the two definitions are not equivalent

- Can be grouped by model class (obviously)
 - Neural network, K-nearest neighbor, decision tree, ... Exercise Is logistic regression a generative or discriminative classifier?
- By method of training (together with model class)
 - For example, PERCEPTRON algorithm, Logistic Regression, (Linear) Support Vector Machine (see later), Decision Tree with 1 level are all linear classifiers, but usually produce different decision boundaries give a D

A comparison of generative and discriminative classifiers

Advantages of generative classifiers

- Generative classifiers are statistically motivated
- Generative classifiers are asymptotically optimal

Theorem

If $Y \in \{\pm 1\}$, the model class G_y in which we are estimating g_y contains the true distributions P(X|Y = y) for every y, and $g_y = P(X|Y), P(Y = y)$ are estimated by Maximum Likelihood then the expected loss² of the generative classifier f_g given by (2) tends to the Bayes loss when $n \to \infty$, i.e $\lim_{N\to\infty} L_{01}(f_g) \le \min_{f \in \mathcal{F}} L_{01}(f)$. Here \mathcal{F} is the class of likelihood ratio classifiers obtainable from g_y 's in \mathcal{G}_y .

- ► The log-likelihood ratio $\ln \frac{P(Y=1|x)}{P(Y=-1|x)}$ is a natural confidence measure for the label at $f_g(x)$. The further away from 0 the likelihood ratio, the higher the confidence that the chosen y is correct.
- Generative classifiers extend naturally to more than two classes. If a new class appears, or the class distribution P(Y) changes, updating the classifier is simple and computationally efficient.
- Often it is easier to pick a (parametric) model class for g_y than an f directly. Generative models are generally more intuitive, while often representing/visualizing decision boundaries between more than two classes is tedious.

October, 2022

October, 2022

Advantages of discriminative classifiers

- Generative models offer no guarantees if the true gy aren't in the chosen model class, whereas for many classes of discriminative models there are guarantees.
- Many discriminative models have performance guarantees for any sample size n, while generative models are only guaranteed for large enough n
- Discriminative classifiers offer many more choices (but one must know how to pick the right model)
- ▶ Generative models do not use data optimally in the non-asymptotic regime (when n ≪∞). This has been confirmed practically many times, as discriminative classifiers have been very successful for limited sample sizes

Exercise LDA vs Logistic regression: Experiment with LDA vs LR when data comes from 2 Normal distributions, with outliers. What outliers affect which method more? Experiment also on a toy data set like the one in the lecture notes.

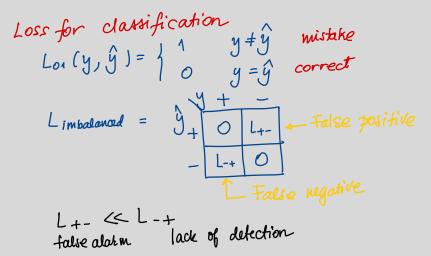
Ex: LDA (fit $N(\mu_{\pm}, \sigma^2 I_d)$ to each class) new example sgw (μ+~μ-) (x-x0)= y LDA + $\chi_0 = \mu + + \mu_-$

Loss functions

The loss function represents the cost of error in a prediction problem. We denote it by L, where

 $L(y, \hat{y}) =$ the cost of predicting \hat{y} when the actual outcome is y

Note that sometimes the loss depends on x directly. Then we would write it as $L(y, \hat{y}, x)$. As usually $\hat{y} = f(x)$ or $\operatorname{sgn} f(x)$, we will typically abuse notation and write L(y, f(x)).



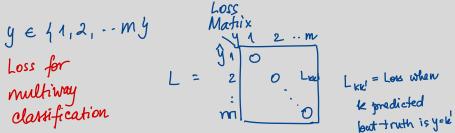
Marina Mei

Loss functions

The loss function represents the cost of error in a prediction problem. We denote it by L, where

 $L(y, \hat{y}) =$ the cost of predicting \hat{y} when the actual outcome is y

Note that sometimes the loss depends on x directly. Then we would write it as $L(y, \hat{y}, x)$. As usually $\hat{y} = f(x)$ or $\operatorname{sgn} f(x)$, we will typically abuse notation and write L(y, f(x)).



Loss functions for classification

For classification, a natural loss function is the misclassification error (also called 0-1 loss)

$$L_{01}(y, f(x)) = 1_{[y \neq f(x)]} = \begin{cases} 1 & \text{if } y \neq f(x) \\ 0 & \text{if } y = f(x) \end{cases}$$
(6)

Sometimes different errors have different costs. For instance, classifying a HIV+ patient as negative (a false negative error) incurs a much higher cost than classifying a normal patient as HIV+ (false positive error). This is expressed by asymmetric misclassification costs. For instance, assume that a false positive has cost one and a false negative has cost 100. We can express this in the matrix

f(x):	+	—
true :+	0	100
-	1	0

In general, when there are p classes, the matrix $L = [L_{kl}]$ defines the loss, with L_{kl} being the cost of misclassifying as l an example whose true class is k.