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Parametric vs non-parametric

Generative and discriminative models for classification

Generative classifiers
Discriminative classifiers
Generative vs discriminative classifiers

Loss functions
Bayes loss

Variance, bias and complexity

Reading HTF Ch.: 2.1–5,2.9, 7.1–4 bias-variance tradeo↵, Murphy Ch.: 1., 8.61, Bach Ch.:

1Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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The “learning” problem

I Given

I a problem (e.g. recognize digits from m ⇥m gray-scale images)
I a sample or (training set) of labeled data

D = {(x1, y1), (x2, y2), . . . (xn, yn)}

drawn i.i.d. from an unknown PXY

I model class F = {f } = set of predictors to choose from

I Wanted
I a predictor f 2 F that performs well on future samples from the same PXY

I “choose a predictor f 2 F” = training/learning
I “performs well on future samples” (i.e. f generalizes well) – how do we measure this? how can

we “guarantee” it?
I choosing F is the model selection problem – about this later
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A zoo of predictors

I Linear regression
I Logistic regression
I Linear Discriminant (LDA)
I Quadratic Discriminant (QDA)
I CART (Decision Trees)
I K-Nearest Neighbors
I Nadaraya-Watson (Kernel regression)
I Naive Bayes
I Neural networks/Deep learning
I Support Vector Machines
I Monotonic Regression
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Parametric vs. non-parametric models

Example (Parametric and non-parametric predictors)

Parametric

I Linear, logistic regression
I Linear Discriminant Analysis (LDA)
I Neural networks
I Naive Bayes
I CART with L levels

Non-parametric

I Nearest-neighbor classifiers and
regressors

I Nataraya-Watson predictors
I Monotonic regression
I (Support Vector Machines)

Exercise Are Radial Basis Functions classifiers parametric or non-parametric?
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A mathematical definition
I A model class F is parametric if it is finite-dimensional, otherwise it is non-parametric

In other words
I When we estimate a parametric model from data, there is a fixed number of parameters, (you can

think of them as one for each dimension, although this is not always true), that we need to
estimate to obtain an estimate f̂ 2 F .

I The parameters are meaningful.
E.g. the �j in logistic regression has a precise meaning: the component of the normal to the
decision boundary along coordinate j .

I The dimension of � does not change if the sample size N increases.
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Non-parametric models – Some intuition

I When the model is non-parametric, the model class F is a function space.
I The f̂ that we estimate will depend on some numerical values (and we could call them

parameters), but these values have little meaning taken individually.
I The number of values needed to describe f̂ generally grows with n.

Examples In the Nearest neighbor and kernel predictors, we have to store all the data
points, thus the number of values describing the predictor f grows (linearly) with the
sample size. Exercise Does the number of values describing f always grow linearly with the sample

size? Does it have to always grow to infinity? Does it have to always grow in the same way for a given

F?
I Non-parametric models often have a smoothness parameter.

Examples of smoothness parameters K in K-nearest neighbor, h the kernel bandwidth in
kernel regression.
To make matters worse, a smoothness parameter is not a parameter! More precisely it is
not a parameter of an f 2 F , because it is not estimated from the data, but a descriptor
of the model class F .

I We will return to smoothness parameters later in this lecture.
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Generative classifiers

One way to define a classifier is to assume that each class is generated by a distribution
gy (X ) = P(X |Y = y). If we know the distributions gy and the class probabilities P(Y = y),
we can derive the posterior probability distribution of Y for a given x . This is

P(Y = y |X ) =
P(Y = y)gy (X )

P
y0 P(Y = y 0)gy0 (X )

=
P(Y = y)gy (X )

P(X )
(1)

The “best guess” for Y (X ) (i.e. the decision rule) is

f (X ) = argmaxyP(Y = y |x) = argmaxyP(Y = y)gy (x) (2)

I (1) amounts to a likelihood ratio test for Y .
I The functions gy (x) are known as generative models for the classes y .

Therefore, the resulting classifier is called a generative classifier.
Examples: LDA, QDA, Naive Bayes.

I In contrast, a classifier defined directly in terms of f (x) (or PY |X ), like the linear,
quadratic, decision tree is called a discriminative classifier.

I In practice, we may not know the functions gy (x), in which case we estimate them from
the sample D.
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Generative classifier and the likelihood ratio

P(Y = y |X ) =
P(Y = y)gy (X )

P
y0 P(Y = y 0)gy0 (X )

=
P(Y = y)gy (X )

P(X )

f (x) = argmaxyP(Y = y |x) = argmaxy gy (x)P(Y = y)

Likelihood Ratio test (for y 2 {±1})

g+(x)P(Y = +)

g�(x)P(Y = �)
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Example (Fisher’s LDA in one dimension)

Assume Y = ±1, gy (x) = N(x ,±µ,�2
I ), i.e each class is generated by a Normal distribution

with the same spherical covariance matrix, but with a di↵erent mean. Let
P(Y = 1) = p 2 (0, 1). Then, the posterior probability of Y is

P(Y = 1|x) / pe
�||x�µ||2/(2�2)

P(Y = �1|x) / (1� p)e�||x+µ||2/(2�2) (3)

and f (x) = 1 i↵ lnP(Y = 1|x)/P(Y = �1|x) � 0, i.e i↵

ln
p

1� p
�

1

2�2
[||x2||�2µT

x+||µ||2�||x2||�(2µ)T x�||µ||2] =

✓
2µ

�2

◆
T

x+ln
p

1� p
� 0 (4)

Hence, the classifier f (x) turns out to be a linear classifier. The decision boundary is
perpendicular to the segment connecting the centers µ,�µ. This classifier is known as Fisher’s

Linear Discriminant. [Exercises Show that if the generative models are normal with di↵erent
variances, then we obtain a quadratic classifier. What happens if the models gy have the same
variance, but it is a full covariance matrix ⌃?]
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Discriminative classifiers

I Defined directly in terms of f (x) or (almost) equivalently, in terms of the decision
boundary {f (x) = 0}

I Can be classified by the shape of the decision boundary (if it’s simple)
I linear, polygonal, quadratic, cubic,. . .

The ambiguity of “linear classifier”

Does it mean f (x) = �T
x OR {f (x) = 0} is a hyperplane ?

If we talk about classification and the domain of x is Rd , then “linear” refers to decision
boundary. Otherwise it refers to the expression of f (x). Exercise Find examples when the two

definitions are not equivalent

I Can be grouped by model class (obviously)
I Neural network, K-nearest neighbor, decision tree, . . .

Exercise Is logistic regression a generative or discriminative classifier?
I By method of training (together with model class)

I For example, Perceptron algorithm, Logistic Regression, (Linear) Support Vector Machine (see
later), Decision Tree with 1 level are all linear classifiers, but usually produce di↵erent decision
boundaries give a D
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A comparison of generative and discriminative classifiers

Advantages of generative classifiers
I Generative classifiers are statistically motivated
I Generative classifiers are asymptotically optimal

Theorem

If Y 2 {±1}, the model class Gy in which we are estimating gy contains the true distributions

P(X |Y = y) for every y , and gy = P(X |Y ),P(Y = y) are estimated by Maximum Likelihood

then the expected loss
2
of the generative classifier fg given by (2) tends to the Bayes loss when

n ! 1, i.e limN!1 L01(fg )  min
f2F

L01(f ). Here F is the class of likelihood ratio classifiers

obtainable from gy ’s in Gy .

I The log-likelihood ratio ln P(Y=1|x)
P(Y=�1|x) is a natural confidence measure for the label at

fg (x). The further away from 0 the likelihood ratio, the higher the confidence that the
chosen y is correct.

I Generative classifiers extend naturally to more than two classes. If a new class appears, or
the class distribution P(Y ) changes, updating the classifier is simple and computationally
e�cient.

I Often it is easier to pick a (parametric) model class for gy than an f directly. Generative
models are generally more intuitive, while often representing/visualizing decision
boundaries between more than two classes is tedious.

2Loss, Bayes loss, L01 are defined in the next section.
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Advantages of discriminative classifiers
I Generative models o↵er no guarantees if the true gy aren’t in the chosen model class,

whereas for many classes of discriminative models there are guarantees.
I Many discriminative models have performance guarantees for any sample size n, while

generative models are only guaranteed for large enough n

I Discriminative classifiers o↵er many more choices (but one must know how to pick the
right model)

I Generative models do not use data optimally in the non-asymptotic regime (when n ⌧ 1
). This has been confirmed practically many times, as discriminative classifiers have been
very successful for limited sample sizes

Exercise LDA vs Logistic regression: Experiment with LDA vs LR when data comes from 2 Normal

distributions, with outliers. What outliers a↵ect which method more? Experiment also on a toy data set like

the one in the lecture notes.
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Loss functions

The loss function represents the cost of error in a prediction problem. We denote it by L, where

L(y , ŷ) = the cost of predicting ŷ when the actual outcome is y

Note that sometimes the loss depends on x directly. Then we would write it as L(y , ŷ , x).

As usually ŷ = f (x) or sgnf (x), we will typically abuse notation and write L(y , f (x)).
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Loss functions for classification

For classification, a natural loss function is the misclassification error (also called 0-1 loss)

L01(y , f (x)) = 1[y 6=f (x)] =

⇢
1 if y 6= f (x)
0 if y = f (x)

(6)

Sometimes di↵erent errors have di↵erent costs. For instance, classifying a HIV+ patient as
negative (a false negative error) incurs a much higher cost than classifying a normal patient as
HIV+ (false positive error). This is expressed by asymmetric misclassification costs. For
instance, assume that a false positive has cost one and a false negative has cost 100. We can
express this in the matrix

f (x) : + �
true :+ 0 100

� 1 0

In general, when there are p classes, the matrix L = [Lkl ] defines the loss, with Lkl being the
cost of misclassifying as l an example whose true class is k.


