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Parametric vs non-parametric &—-

Generative and discriminative models for classification e’
Generative classifiers
Discriminative classifiers
Generative vs discriminative classifiers

Loss functions X
Bayes loss

Variance, bias and complexity

Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.6, Bach Ch.:
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INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading



The “learning” problem

October, 2022

»> Given
» a problem (e.g. recognize digits from m X m gray-scale images)
» a sample or (training set) of labeled data
D={(x"yh), % ¥%), ... (x",y")} .
§7 W on
drawn i.i.d. from an unknown Pxy / 10?45@ & J
» model class F = {f} = set of predictors to choose from CART .
[far pegr.e.(mon
» Wanted °
» a predictor f € F that performs well on future samples from the same Pxy

P ‘“choose a predictor f € 7" = training/learning

» ‘“performs well on future samples” (i.e. f generalizes well) — how do we measure this? how can
we ‘“guarantee” it?

» /choosing F is the model selection problem — about this later
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A zoo of predictors

VYVVYVVYVYYVYYY

Linear regression

Logistic regression ?o_vv

Linear Discriminant (LDA) — .
Quadratic Discrimina(nt ((%DA)’ ‘BQWU‘&
CART (Decision Trees)

K-Nearest Neighbors

Nadaraya-Watson (Kernel regression)

Naive Bayes — v
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Parametric vs. non-parametric models » CART with n leaves

Ls Jample Size

Example (Parametric and non-parametrid predictors)
Parametric md Non-parametric
> Linear, logistic regression 5 G'E » Nearest-neighbor classifiers and
» Linear Discriminant Analysis (LDA) regressors
» Neural networks > Nazaraya-Watson predictors
> Naive Bayes »> Monotonic regression
» CART with L levels » (Support Vector Machines)

L leawes S -1 Sptits

Exercise Are Radial Basis Functions classifiers parametric or non-parametric?
Decision Tnae ?amw\M‘M :
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A mathematical definition
» A model class F is parametric if it is finite-dimensional, otherwise it is non-parametric
—————
—_———

In other words = dfmg”:

» When we estimate a parametric model from data, there is a fixed.number. of parameters, (you can
think of them as one for each dimension, although this is not always true), that we need to
estimate to obtain an estimate f € F.

» The parameters are meaningful.

E.g. the 3; in logistic regression has a precise meaning: the component of the normal to the
decision boundary along coordinate j.
» The dimension of 3 does not change if the sample size N increases.
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Non-parametric models — Some intuition

October, 2022

» When the model is non-parametric, the model class F is a function space.

> The f that we estimate will depend on some numerical values (and we could call them
parameters), but these values have little meaning taken individually.

» The number of values needed to describe f generally grows with n.
Examples In the Nearest neighbor and kernel predictors, we have to store all the data
points, thus the number of values describing the predictor f grows (linearly) with the
sample size. Exercise Does the number of values describing f always grow linearly with the sample
size? Does it have to always grow to infinity? Does it have to always grow in the same way for a given
F?

» Non-parametric models often have a smoothness parameter.
Examples of smoothness parameters K in K-nearest neighbor, h the kernel bandwidth in
kernel regression.
To make matters worse, a smoothness parameter is not a parameter! More precisely it is
not a parameter of an f € F, because it is not estimated from the data, but a descriptor
of the model class F.

» We will return to smoothness parameters later in this lecture.
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Generative classifiers C&WHW <%‘ ‘/8

One way to define a classifier is to assume that each class is generated by a distribution
8y(X) = P(X|Y = y). If we know the distributions g, and the class probabilities P(Y = y),
we can derive the posterior probability distribution of Y for a given x. This is

_ __ PY=ygy(X) _ P(Y =y)ey(X)
PO = S pv =10~ P(0) @
The “best guess” for Y(X) (i.e. the decision rule) is
f(X)= argmaxyP(Y =y|x) = argmaxyP(Y = y)gy(x) (2)

» (1) amounts to a likelihood ratio test for Y.

» The functions gy, (x) are known as generative models for the classes y.
Therefore, the resulting classifier is called a generative classifier.
Examples: LDA, QDA, Naive Bayes.

> In contrast, a classifier defined directly in terms of f(x) (or Py|x), like the linear,
quadratic, decision tree is called a discriminative classifier.

» In practice, we may not know the functions gy (x), in which case we estimate them from
the sample D.
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Generative classifier and the likelihood ratio

October, 2022

_ _ _P¥=yeX) _ PY=y&X)
PY=P0 = & P =g, () P(X)
f(x) = argmaxyP(Y =y|x) = argmaxygy(x)P(Y =vy)
Likelihood Ratio test (for y € {&1})

g (x)P(Y =+)
g-(x)P(Y =-)
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Example (Fisher's LDA in one dimension)

Assume Y = £1, g, (x) = N(x, £u,0?l), i.e each class is generated by a Normal distribution
with the same spherical covariance matrix, but with a different mean. Let
P(Y =1) = p € (0,1). Then, the posterior probability of Y is

P(Y = 1|x) « pe~Ix=nlI?/@o%)  p(y = _1|x) « (1 — p)e~!Ix+null?/@o?) (3)

and f(x) = 1iff InP(Y = 1|x)/P(Y = —1|x) > 0, i.e iff

>0 (4)

-
0 £ bl 2T P12 x=llul] = (25 xerin 2

—p 20 o 1
Hence, the classifier f(x) turns out to be a linear classifier. The decision boundary is
perpendicular to the segment connecting the centers p, —pu. This classifier is known as Fisher’s
Linear Discriminant. [Exercises Show that if the generative models are normal with different
variances, then we obtain a quadratic classifier. What happens if the models g, have the same
variance, but it is a full covariance matrix X?]
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Discriminative classifiers

» Defined directly in terms of f(x) or (almost) equivalently, in terms of the decision
boundary {f(x) = 0}
» Can be classified by the shape of the decision boundary (if it's simple)
» linear, polygonal, quadratic, cubic,. ..

The ambiguity of “linear classifier”

Does it mean f(x) = 87 x OR {f(x) = 0} is a hyperplane ?

If we talk about classification and the domain of x is RY, then “linear” refers to decision
boundary. Otherwise it refers to the expression of f(x). Exercise Find examples when the two
definitions are not equivalent

» Can be grouped by model class (obviously)
» Neural network, K-nearest neighbor, decision tree, ...
Exercise Is logistic regression a generative or discriminative classifier?
» By method of training (together with model class)
» For example, PERCEPTRON algorithm, Logistic Regression, (Linear) Support Vector Machine (see
later), Decision Tree with 1 level are all linear classifiers, but usually produce different decision
boundaries give a D
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A comparison of generative and discriminative classifiers

Advantages of generative classifiers
> Generative classifiers are statistically motivated
> Generative classifiers are asymptotically optimal

Theorem
If Y € {£1}, the model class G, in which we are estimating g;
P(X|Y =y) for every y, and g, = P(X|Y), P(Y = y) are estimated by Ma kelihood

then the expected loss® of the generative classifier fy given by (2) tends to the Bayes loss when
n— 0o, i.e limy_ o0 Lo1(fg) < }mﬁ Lo1(f). Here F is the class of likelihood ratio classifiers
€

obtainable from gy 's in G, .

» The log-likelihood rati¢ In % 5 a natural confidence measure for the label at

fz(x). The further away ‘fram.0.theikelihood ratio, the higher the confidence that the
chosen y is correct.

» Generative classifiers extend naturally to more than two classes. If a new class appears, or
the class distribution P(Y') changes, updating the classifier is simple and computationally
efficient.

» Often it is easier to pick a (parametric) model class for g, than an f directly. Generative
models are generally more intuitive, while often representing/visualizing decision
boundaries between more than two classes is tedious.

2Loss, Bayes loss, LO1 are defined in the next section.
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Advantages of discriminative classifiers

» Generative models offer no guarantees if the true gy, aren’t in the chosen model class,
whereas for many classes of discriminative models there are guarantees.

» Many discriminative models have performance guarantees for any sample size n, while
generative models are only guaranteed for large enough n

» Discriminative classifiers offer many more choices (but one must know how to pick the
right model)

> Generative models do not use data optimally in the non-asymptotic regime (when n < co
). This has been confirmed practically many times, as discriminative classifiers have been
very successful for limited sample sizes

Exercise LDA vs Logistic regression: Experiment with LDA vs LR when data comes from 2 Normal
distributions, with outliers. What outliers affect which method more? Experiment also on a toy data set like
the one in the lecture notes.
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Loss functions

October, 2022

The loss function represents the cost of error in a prediction problem. We denote it by L, where
L(y,y) = the cost of predicting § when the actual outcome is y

Note that sometimes the loss depends on x directly. Then we would write it as L(y, 7, x).
As usually y = f(x) or sgnf(x), we will typically abuse notation and write L(y, f(x)).
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Loss functions

The loss function represents the cost of error in a prediction problem. We denote it by L, where
L(y,y) = the cost of predicting § when the actual outcome is y

Note that sometimes the loss depends on x directly. Then we would write it as L(y, 7, x).
As usually y = f(x) or sgnf(x), we will typically abuse notation and write L(y, f(x)).

L =Leuw‘~ﬂw

lout ki 15 E}“‘
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Loss functions for classification

For classification, a natural loss function is the misclassification error (also called 0-1 loss)

Loa(y, f(x)) = 1yzr) = { (1) Hi?g% &

Sometimes different errors have different costs. For instance, classifying a HIV+ patient as
negative (a false negative error) incurs a much higher cost than classifying a normal patient as
HIV+ (false positive error). This is expressed by asymmetric misclassification costs. For
instance, assume that a false positive has cost one and a false negative has cost 100. We can
express this in the matrix

f): |+ -
true:+ | 0 100
— |1 0

In general, when there are p classes, the matrix L = [Ly] defines the loss, with Ly being the
cost of misclassifying as / an example whose true class is k.



