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Linear SVM’s
The margin and the expected classification error
Maximum Margin Linear classifiers
Linear classifiers for non-linearly separable data

Non linear SVM
The “kernel trick”
Kernels
Prediction with SVM

Extensions
L1 SVM
Multi-class and One class SVM
SV Regression

Reading HTF Ch.: Ch. 12.1–3, Murphy Ch.: Ch 14 (14.1,14.2–14.2.4 kernels, 14.4 and
equations (14.28,14.29) kernel trick, 14.5.1.–3 Support Vector Machines), Bach Ch.: 7.1–7.4,
7.7
Additional Reading: C. Burges - “A tutorial on SVM for pattern recognition”
These notes: Appendices (convex optimization) are optional.
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The margin and the expected classification error

Theorem Let F = {sgn (wT x), ||w || ≤ Λ, ||x || ≤ R} and let ρ > 0 be any “margin”. Then for
any f ∈ F , w.p 1− δ over training sets

L01(f ) ≤ L̂ρ +

√
c

n

(
R2Λ2

ρ2
ln n2 + ln

1

δ

)
(5)

where c is a universal constant and L̂ρ is the fraction of the training examples for which

y iwT xi < ρ (6)

I a data point i that satisfies (6) for some ρ is called a margin error
I For ρ = 0 the margin error rate L̂ρ is equal to L̂01
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Maximum Margin Linear classifiers

Support Vector Machines appeared from the convergence of Three Good Ideas
Assume (for the moment) that the data are linearly separable.

I Then, there are an infinity of linear classifiers that have L̂01 = 0. Which one to choose?
First idea Select the classifier that has maximum margin ρ on the training set.

I For any parameters (w , b) that perfectly classify the data L̂(w , b) = 0.
I Among these, the best (w , b) is the one that minimizes ρ in 5
I Hence, we should choose

argmax
ρ,w,b:L̂(w,b)=0

ρ, s.t. d(x ,Hw,b) ≥ ρ for i = 1 : n, (7)

where d() denotes the Euclidean distance and Hw,b = { x |wT x + b = 0} is the decision
boundary of the linear classifier.

I Because d(x ,Hw,b) = |wT x+b|
||w|| (proof in a few slides) (7) becomes

argmax
ρ,w,b:L̂(w,b)=0

ρ, s.t.
|wT x i + b|
||w ||

≥ ρ for i = 1 : n, (8)
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Maximum Margin Linear classifiers

We continue to transform (8)

I If all data correctly classified, then y i (wT x i + b) = |wT x i + b|. Therefore (8) has the
same solution as

argmax
ρ,w,b

ρ, s.t.
y i (wT x i + b)

||w ||
≥ ρ for i = 1 : n, (9)

I Note now that the problem (9) is underdetermined. Setting w ← Cw , b ← Cb with C > 0
does not change anything.

I We add a cleverly chosen constraint to remove the indeterminacy; this is||w || = 1/ρ,
which allows us to eliminate the variable ρ. We get

argmax
w,b

1

w
, s.t. y i (wT x i + b) ≥ 1 for i = 1 : n, (10)

Note: the successive problems (7),(8),(9),. . . are equivalent in the sense that their optimal
solution is the same.
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Alternative derivation of (10)

First idea Select the classifier that has maximum margin on the training set, by the alternative
definition of margin.
Formally, define mini=1:n y

i f (x i ) be the margin of classifier f on D. Let f (x) = wT x + b,
and choose w , b that

maximizew∈Rn,b∈R min
i=1:n

y i (wT x i + b) s.t. L̂(w , b) = 0

I Remarks
I (if data is linearly separable), there exist classifiers with margins > 0
I one can arbitrarily increase the margin of such a classifier by multiplying w and b by a positive

constant.
I Hence, we need to “normalize” the set of candidate classifiers by requiring instead

maximize min
i=1:n

d(x,Hw,b), s.t. y i (wT x i + b) ≥ 1 for i = 1 : n, (11)

where d() denotes the Euclidean distance and Hw,b = { x |wT x + b = 0} is the decision
boundary of the linear classifier.

I Under the conditions of (11), because there are points for which |wT x + b| = 1, maximizing
d(x,Hw,b) over w , b for such a point is the same as

max
w,b

1

||w ||
, s.t. min

i
yi (w

T x + b) = 1 (12)
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Second idea

The Second idea is to formulate (10) as a quadratic optimization problem.

min
w,b

1

2
||w ||2 s.t y i (wT x i + b) ≥ 1 for all i = 1 : n (13)

This is the Linear SVM (primal) optimization problem

I This problem has a strongly convex objective ||w ||2, and constraints y i (wT x i + b) linear
in (w , b).

I Hence this is a convex problem, and can be studied with the tools of convex optimization.
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The distance of a point x to a hyperplane Hw ,b

d(x ,Hw,b) =
|wT x + b|
||w ||

(14)

Intuition: denote

w̃ =
w

||w ||
, b̃ =

b

||w ||
, x ′ = w̃T x . (15)

Obviously Hw,b = Hw̃,b̃, and x ′ is the length of the projection of point x on the direction of w .

The distance is measured along the normal through x to H; note that if x ′ = −b̃ then
x ∈ Hw,b and d(x ,Hw,b) = 0; in general, the distance along this line will be |x ′ − (−b̃)|.
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Optimization with Lagrange multipliers
2 The Lagrangean of (13) is

L(w , b, α) =
1

2
||w ||2 −

∑
i

αi [y
i (wT x i + b)− 1]. (16)

[KKT conditions]

At the optimum of (13)

w =
∑
i

αiy
ix i with αi ≥ 0 (17)

and b = y i − wT x i for any i with αi > 0.

I Support vector is a data point x i such that αi > 0.
I According to (17), the final decision boundary is determined by the support vectors (i.e.

does not depend explicitly on any data point that is not a support vector).

2The derivations of these results are in the Appendix
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Dual SVM optimization problem

I Any convex optimization problem has a dual problem. In SVM, it is both illuminating and
practical to solve the dual problem.

I The dual to problem (13) is

max
α1:n

∑
i

αi −
1

2

∑
i

αiαjy
iy jx i T xj s.t αi ≥ 0 for all i and

∑
i

αiy
i = 0. (18)

I This is a quadratic problem with n variables on a convex domain.
I Dual problem in matrix form

I Denote α = [αi ]i=1:n, y = [y i ]i=1:n, Gij = x i T xj , Ḡij = y iy jx i T xj ,

G = [Gij ] ∈ Rn×n, Ḡ = [Ḡij ] ∈ Rn×n.

max
α∈Rn

1T
α−

1

2
α

T Ḡα s.t α � 0 and yT
α = 0. (19)

I g(α) = 1Tα− 1
2
αT Ḡα is the dual objective function

I G is called the Gram matrix of the data. Note that Ḡ = diag {y1:n}TGdiag {y1:n}.

I At the dual optimum
I αi > 0 for constraints that are satisfied with equality, i.e. tight
I αi = 0 for the slack constraints
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Non-linearly separable problems and their duals

The C-SVM

minimizew,b,ξ
1

2
||w ||2 + C

∑
i

ξi (20)

s.t. y i (wT x i + b) ≥ 1− ξi
ξi ≥ 0

In the above, ξi are the slack variables. Dual3:

maximizeα
∑
i

αi −
1

2

∑
i

αiαjy
iyjx

i T xj (21)

s.t. C ≥ αi ≥ 0 for all i∑
i

αiy
i = 0

⇒ two types of SV

I αi < C data point x i is “on the margin” ⇔ y i (wT x i + b) = 1 (original SV)
I αi = C data point x i cannot be classified with margin 1 (margin error)
⇔ y i (wT x i + b) < 1

3Lagrangean L(w, b, ξ, α, µ) = 1
2
||w||2 + C

∑
i ξi −

∑
i αi [y

i (wT x i + b)− 1 + ξi ]−
∑

i µiξi with
αi ≥ 0, ξi ≥ 0, µi ≥ 0
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The ν-SVM

minimizew,b,ξ,ρ
1

2
||w ||2 − νρ+

1

n

∑
i

ξi (22)

s.t. y i (wT x i + b) ≥ ρ− ξi (23)

ξi ≥ 0 (24)

ρ ≥ 0 (25)

where ν ∈ [0, 1] is a parameter.
Dual4:

maximizeα −
1

2

∑
i

αiαjy
iy jx i T x j (26)

s.t.
1

n
≥ αi ≥ 0 for all i (27)∑

i

αiy
i = 0 (28)

∑
i

αi ≥ ν (29)

Properties If ρ > 0 then:

I ν is an upper bound on #margin errors/n (if
∑

i αi = ν)
I ν is a lower bound on #(original support vectors + margin errors)/n
I ν-SVM leads to the same w , b as C-SVM with C = 1/ν
4Lagrangean L(w, b, ξ, ρ, α, µ, δ) = 1

2
||w||2 − νρ + 1

n

∑
i ξi −

∑
i αi [y

i (wT x i + b)− ρ + ξi ]−
∑

i µiξi − δρ
with αi ≥ 0, δ ≥ 0, µi ≥ 0
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A simple error bound

L01(fn) ≤ E

[
#support vectors of fn+1

n + 1

]
(30)

where fn denotes the SVM trained on a sample of size n.
Exercise Use the Homework 6 to prove this result.
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Non-linear SVM

How to use linear classifier on data that is not linearly separable?
An old trick

1. Map the data x1:n to a higher dimensional space

x → z = φ(x) ∈ H,with dim H >> n.

2. Construct a linear classifier wT z + b for the data in H

In other words, we are implementing the non-linear classifier

f (x) = wTφ(x) + b = w1φ1(x) + w2φ2(x) + . . .+ wmφm(x) + b (31)
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Example

I Data {(x , y)} below are not linearly separable
x y z

-1 -1 1 -1 -1 1
-1 1 -1 -1 1 -1
1 -1 -1 1 -1 -1
1 1 1 1 1 1

I We map them to 3 dimensions by

z = φ(x) = [x1 x2 x1x2].

I Now the classes can be separated by the hypeplane z3 = 0 (which happens to be the
maximum margin hyperplane). Hence,
I w = [ 0 0 1 ] (a vector in H)
I b = 0
I and the classification rule is f (φ(x)) = wTφ(x) + b.

I If we write f as a function of the original x we get

f (x) = x1x2

a quadratic classifier.
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Non-linear SV problem

I Primal problem minimize 1
2
||w ||2 s.t y i (wTφ(x i ) + b)− 1 ≥ 0 for all i .

I Dual problem

max
α1:n

∑
i

αi −
1

2

∑
i

αiαj y
iyjφ(x i )Tφ(xj )︸ ︷︷ ︸

Ḡij

s.t. αi ≥ 0 for all i and
∑
i

y iαi = 0 (32)

Gij = φ(x i )Tφ(x j ) and Ḡ = diag {y1:n}TG diag {y1:n}. (33)

I Ḡij has been redefined in terms of φ
I Dual problem

max
α

1Tα−
1

2
αT Ḡα s.t. αi ≥ 0, yTα = 0 (34)

I Same as (19)!
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The “Kernel Trick”

Third idea The result (34) is the celebrated kernel trick of the SVM literature. We can make the
following remarks.

1. The φ vectors enter the SVM optimization problem only trough the Gram matrix, thus
only as the scalar products φ(x i )Tφ(xj ). We denote by K(x , x ′) the function

K(x , x ′) = K(x ′, x) = φ(x)Tφ(x ′) (35)

K is called the kernel function. If K can be computed efficiently, then the Gram matrix G
can also be computed efficiently. This is exactly what one does in practice: we choose φ
implicitly by choosing a kernel K . Hereby we also ensure that K can be computed
efficiently.

2. Once G is obtained, the SVM optimization is independent of the dimension of x and of
the dimension of z = φ(x). The complexity of the SVM optimization depends only on n
the number of examples. This means that we can choose a very high dimensional φ
without any penalty on the optimization cost.

3. Classifying a new point x . As we know, the SVM classification rule is

f (x) = wTφ(x) + b =
n∑

i=1

αiy
iφ(x i )Tφ(x) =

n∑
i=1

αiy
iK(x i , x) (36)

Hence, the classification rule is expressed in terms of the support vectors and the kernel
only. No operations other than scalar product are performed in the high dimensional space
H.
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Kernels

The previous section shows why SVMs are often called kernel machines. If we choose a kernel,
we have all the benefits of a mapping in high dimensions, without ever carrying on any
operations in that high dimensional space. The most usual kernel functions are
K(x , x ′) = (1 + xT x ′)p the polynomial kernel of degree p
K(x , x ′) = tanh(σxT x ′ − β) the “neural network” kernel

K(x , x ′) = e
− ||x−x′||2

σ2 the Gaussian or radial basis function (RBF) kernel
it’s φ is ∞-dimensional
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The Mercer condition

I How do we verify that a chosen K is is a valid kernel, i.e that there exists a φ so that
K(x , x ′) = φ(x)Tφ(x ′)?

I This property is ensured by a positivity condition known as the Mercer condition.

Mercer condition
Let (X , µ) be a finite measure space. A symmetric function K : X × X , can be written in the
form K(x , x ′) = φ(x)Tφ(x ′) for some φ : X → H ⊂ Rm iff∫

X 2
K(x , x ′)g(x)g(x ′)dµ(x)dµ(x ′) ≥ 0 for all g such that ||g(x)||L2

<∞ (37)

I In other words, K must be a positive semidefinite operator on L2.
I If K satisfies the Mercer condition, there is no guarantee that the corresponding φ is

unique, or that it is finite-dimensional.
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Quadratic kernel

I C-SVM, polynomial degree 2 kernel, n = 200, C = 10000
I The two ellipses show that a constant shift to the data (x i ← x i + v , v ∈ Rn) can affect

non-linear kernel classifiers.
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RBF kernel and Support Vectors
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Prediction with SVM

I Estimating b
I For any i support vector, wT x i + b = y i because the classification is tight
I Alternatively, if there are slack variables, wT x i + b = y i (1− ξi )
I Hence, b = y i (1− ξi )− wT x i

I For non-linear SVM, where w is not known explicitly, w =
∑

j αjy
jφ(xj ). Hence,

b = y i (1− ξi )−
∑n

j=1 αjy
jK(x i , x j ) for any i support vector

I Given new x

ŷ(x) = sgn(wT x + b) = sgn

(
n∑

i=1

αiy
iK(x i , x) + b

)
. (38)
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L1-SVM

I If the regularization ||w ||2, based on l2 norm, is replaced with the l1 norm ||w ||1, we
obtain what is known as the Linear L1-SVM

min
w,b
||w ||1 + C

∑
i

ξi s.t y i (wT x i + b) ≥ 1− ξi , ξi ≥ 0 for all i = 1 : n (39)

I The use of the l1 norm promotes sparsity in the entries of w

I The Non-linear L1-SVM is

f (x) =
∑
i

(α+
i + α−i )y iK(xi , x) + b classifier (40)

min
α±,b

∑
i

(α+
i + α−i ) + C

∑
i

ξi s.t y i f (x i ) ≥ 1− ξi , ξi , α±i ≥ 0 for all i = 1 : n(41)

I This formulation enforces α+
i = 0 or α−i = 0 for all i . If we set wi = α+

i − α
−
i , we can

write f (x) =
∑

i wiy
iK(x i , x) + b, a linear classifier in the non-linear features K(x i , x).

I The L1-SVM problems are Linear Programs
I The dual L1-SVM problems are also linear programs
I The L1-SVM is no longer a Maximum Margin classifier
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Multi-class and One class SVM

Multiclass SVM
For a problem with K possible classes, we construct K separating hyperplanes wT

r x + br = 0.

minimize
1

2

K∑
r=1

||wr ||2 +
C

n

∑
i,r

ξi,r (42)

s.t. wT
y i
x i + by i ≥ wT

r x i + br + 1− ξi,r for all i = 1 : n, r 6= y i (43)

ξi,r ≥ 0 (44)

One-class SVM This SVM finds the “support regions” of the data, by separating the data from
the origin by a hyperplane. It’s mostly used with the Gaussian kernel, that projects the data on
the unit sphere. The formulation below is identical to the ν-SVM where all points have label 1.

minimize
1

2
||w ||2 − νρ+

1

n

∑
i

ξi (45)

s.t. wT x i + b ≥ ρ− ξi (46)

ξi ≥ 0 (47)

ρ ≥ 0 (48)
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SV Regression

The idea is to construct a “tolerance interval” of ±ε around the regressor f and to penalize
data points for being outside this tolerance margin. In words, we try to construct the
smoothest function that goes within ε of the data points.

minimize
1

2
||w ||2 + C

∑
i

(ξ+
i + ξ−i ) (49)

s.t. ε+ ξ+
i ≥ wT x i + b − y i ≥ −ε− ξ−i (50)

ξ±i ≥ 0 (51)

ρ ≥ 0 (52)

The above problem is a linear regression, but with the kernel trick we obtain a kernel regressor
of the form f (x) =

∑
i (α
−
i − α

+
i )K(x i , x) + b
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Convex optimization in a nutshell

A set D ⊆ Rn is convex iff for every two points x1, x2 ∈ D the line segment defined by
x = tx1 + (1− t)x2, t ∈ [0, 1] is also in D. A function f : D → R is convex iff, for any
x1, x2 ∈ D and for any t ∈ [0, 1] for which tx1 + (1− t)x2 ∈ D the following inequality holds

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2) (53)

If f is convex, then the set { x | f (x) ≤ c } is convex for any value of c. Convex functions
defined on convex sets have very interesting properties which have engendered the field called
convex optimization.
The optimization problem

min
x

f0(x) (54)

s.t. fi (x) ≤ 0 for i = 1, . . .m

is a convex optimization problem if all the functions f , fi are convex. Note that in this case
the feasible domain A =

⋂
i{ x | fi (x) ≤ 0 } is a convex set.
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It is known that if A has a non empty interior then the convex optimization problem has at
most one optimum x∗. If A is also bounded, x∗ always exists.
Assuming that x∗ exists, there are two possible cases: (1) The unconstrained minimum of f0
lies in A. In this case, the optimum can be found by solving the equations ∂f0

∂x
= 0. (2) The

unconstrained minimum of f0 lies outside A. Figure 1 depicts what happens at the optimum x∗

in this case.
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g(x)=0f(x)=c’

f(x)=c

grad f

grad g

f(x)=c’

f(x)=c

grad f

g1=0

g2=0

g3=0

g4=0

grad g4

1
grad g

Figure: (a) One constraint optimization. (b) Four constraint optimization. At the optimum only constraints
g1, g4 are active. f denotes the objective (f0 in text) and g denote the constraints (fi in text).

Assume there is only one constraint f1. The domain A is the inside of the curve f1(x) = 0. The
optimum x∗ is the point where a level curve f0(x) = c is tangent to f1 = 0 from the outside. In
this point, the gradients of two curves lie along the same line, pointing in opposite directions.
Therefore, we can write ∂f0

∂x
= −α ∂f1

∂x
. Equivalently, we have that at x∗, ∂f0

∂x
+ α ∂f1

∂x
= 0.

Note that this is a necessary but not a sufficient condition. The above set of equations
represents the Karush-Kuhn-Tucker optimality conditions (KKT).
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With more than one constraint, the KKT conditions are equivalent to requiring that the
gradient of f0 lies in the subspace spanned by the gradients of the constraints.

∂f0

∂x
= −

∑
i

αi
∂fi

∂x
with αi ≥ 0 for all i (55)

Note that if a certain constraint fi does not participate in the boundary of D at x∗, i.e if the
constraint is not active, the coefficient αi should be 0. Equation (55) can be rewritten as

∂

∂x
[f0(x) +

∑
i

αi fi (x)

︸ ︷︷ ︸
L(x,α)

] = 0 for some αi ≥ 0 for i = 1, . . .m (56)

The optimum x∗ has to satisfy the equation above. The new function L(x , α) is the
Lagrangean of the problem and the variables αi are called Lagrange multipliers. The
Lagrangean is convex in x and affine (i.e linear + constant) in α.



M
ar

in
a

M
ei

la
:

L
ec

tu
re

V
:

S
u

p
p

o
rt

V
ec

to
r

M
a

ch
in

es
N

o
ve

m
b

er
,

2
0

2
2

32

The dual problem Define the function

g(α) = inf
x

L(x , α) α = (αi )i , αi ≥ 0 (57)

In the above, the infimum is over all the values of x for which f0, fi are defined, not just A (but
everything still holds if the infimum is only taken over A). Two facts are important about g

I g(α) ≤ L(x , α) ≤ f (x) for any x ∈ A, α ≥ 0, i.e g is a lower bound for f0, and implicitly
for the optimal value f0(x∗), for any value of α ≥ 0.

I g(α) is concave (i.e −g(α) is convex).

We also can derive from (56) that if x∗ exists then for an appropriate value α∗ we have

g(α∗) = L(x∗, α∗) = f0(x∗) + 0 (58)

and therefore g(α∗) must be the unique maximum of g(α). The second term in L above is
zero because x∗ is on the boundary of A; hence for the active constraints fi (x

∗) = 0 and for
the inactive constraints α∗i = 0.
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This surprising relationship shows that by solving the dual problem

max g(α) (59)

s.t α ≥ 0

we can obtain the values α∗ that plugged into (55 will allow us to find the solution x∗ to our
original (primal) problem. The constraints of the dual are simpler than the constraints of the
primal. In practice, it is surprisingly often possible to compute the function g(α) explicitly.
Below we give a simple example thereof. This is also the case of the SVM optimization
problem, which will be discussed in section 5.
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A simple optimization example

Take as an example the convex optimization problem

min
1

2
x2 s.t x + 1 ≤ 0 (60)

By inspection the solution is x∗ = −1.
Let us now apply to it the convex optimization machinery. We have

L(x , α) =
1

2
x2 + α(x + 1) (61)

defined for x ∈ R and α ≥ 0.

g(α) = inf
x

[
1

2
x2 + α(x + 1)

]
(62)

= inf
x

[
1

2
(x + α)2 −

1

2
α2 + α

]
(63)

= −
1

2
α2 + α (64)

=
1

2
α(2− α) attained for x = −α (65)

The dual problem is

max
1

2
α(2− α) s.t α ≥ 0 (66)

and its solution is α = 1 which, using equation (65) leads to x = −1.
From the KKT condition

∂L

∂x
= x + α = 0 (67)

we also obtain x∗ = −α∗ = −1.



M
ar

in
a

M
ei

la
:

L
ec

tu
re

V
:

S
u

p
p

o
rt

V
ec

to
r

M
a

ch
in

es
N

o
ve

m
b

er
,

2
0

2
2

35

Figure 2 depicts the function L. Note that L is convex in x (a parabola) and that along the α
axis the graph of L consists of lines. The areas of L that fall outside the admissible domain
x ≤ −1, α ≥ 0 are in flat (green) color. The crossection L(x , α = 0) represents the plot of f .
The constrained minimum of f is at x = −1, the unconstrained one is at x = 0 outside the
admissible domain. Note that g(α) = L(−α, α) is concave, and that in the admissible domain
it is always below the graph of f . The (red) dot is the optimum (x∗, α∗), which represents a
saddle point for h. The line L(x = −1, α) is horizontal (because f1 = x + 1 = 0) and thus
L(x∗, α∗) = L(x∗, ) = f (x∗).

Figure: The surface L(x, α) for the problem min 1
2 x

2 s.t x + 1 ≤ 0.
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The SVM solution by convex optimization

The SVM optimization problem

min
w

1

2
||w ||2 s.t. y i (wT x i + b) ≥ 1 for all i (68)

is a convex (quadratic) optimizaton problem where

f0(w , b) =
1

2
||w ||2 (69)

fi (w , b) = −y iwT x i + 1− y ib (70)

Hence,

L(w , b, α) =
1

2
||w ||2 +

∑
i

αi [1− y ib − y ix i Tw ] (71)

Equating the partial derivatives of h w.r.t w , b with 0 we get

∂L

∂w
= w −

∑
i

αiy
ix i (72)

∂L

∂b
=

∑
i

αiy
i (73)

or, equivalently

w =
∑
i

αiy
ix i 0 =

∑
i

αiy
i (74)

Hence, the normal w to the optimal separating hyperplane is a linear combination of data
points.
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Sparsity of solution Moreover, we know that only those αi corresponding to active constraints
will be non-zero. In the case of SVM, these represent points that are classified with
yi(wT x i + b) = 1. We call these points support points or support vectors. The solution of the
SVM problem does not depend on all the data points, it depends only on the support vectors
and therefore is sparse.
Computing the solution. SVM solvers use the dual problem to compute the solution. Below
we derive the dual for the SVM problem. g(α) is computed explicitly by replacing equation
(74) in (71). After a simple calculation we obtain

g(α) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

y iyjx
i T xjαiαj (75)

or, in vector/matrix notation

g(α) = 1Tα−
1

2
αTGα (76)

where G = [Gij ]ij = [y iyjx
i T xj ]ij .
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A simple SVM problem

Data: 4 vectors in the plane and their labels

x1 = (−2,−2) y1 = +1

x2 = (−1, 1) y2 = +1

x3 = (1, 1) y3 = −1

x4 = (2,−2) y4 = −1

The Gramm matrix G = [x i T xj ]i,j=1:l

G =


8 0 −4 0
0 2 0 −4
−4 0 2 0
0 −4 0 8


The dual function to be maximized (subject to αi ≥ 0) is

g(α) =
∑
i

αi −
1

2

∑
i

αiαjy
iyjx

i T xj

= α1 + α2 + α3 + α4 − 4α2
1 − α2

2 − α2
3 − 4α2

4 − 4α1α3 − 4α2α4

= (2α1 + α3)− (2α1 + α3)2 − α1

+(α2 + 2α4)− (α2 + 2α4)2 − α4

The parts depending on α1, α3 and α2, α4 can be maximized separately.
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After some short calculations we obtain:

α1 = 0 α4 = 0

α2 =
1

2
α3 =

1

2

Hence, the support vectors are x2 and x3. From these, we obtain

w =
∑
i

αiy
ix i =

1

2
(x2 − x3) = (−1, 0)

b = y2 − wT x2 = 0

The results are depicted in the figure below:
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