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Parametric vs non-parametric

Generative and discriminative models for classification

Generative classifiers
Discriminative classifiers
Generative vs discriminative classifiers

Loss functions
Bayes loss

Variance, bias and complexity

Reading HTF Ch.: 2.1–5,2.9, 7.1–4 bias-variance tradeo↵, Murphy Ch.: 1., 8.61, Bach Ch.:

1Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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The “learning” problem

I Given

I a problem (e.g. recognize digits from m ⇥m gray-scale images)
I a sample or (training set) of labeled data

D = {(x1, y1), (x2, y2), . . . (xn, yn)}

drawn i.i.d. from an unknown PXY

I model class F = {f } = set of predictors to choose from

I Wanted
I a predictor f 2 F that performs well on future samples from the same PXY

I “choose a predictor f 2 F” = training/learning
I “performs well on future samples” (i.e. f generalizes well) – how do we measure this? how can

we “guarantee” it?
I choosing F is the model selection problem – about this later
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A zoo of predictors

I Linear regression
I Logistic regression
I Linear Discriminant (LDA)
I Quadratic Discriminant (QDA)
I CART (Decision Trees)
I K-Nearest Neighbors
I Nadaraya-Watson (Kernel regression)
I Naive Bayes
I Neural networks/Deep learning
I Support Vector Machines
I Monotonic Regression
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Bayes loss

I How small can the expected loss L(f ) be?
It is clear that

L(F) = min
f2F

L(f ) � min
f

L(f ) = L
⇤ (10)

where L
⇤ is taken over all possible functions f that take values in Y.

I L
⇤ is the absolute minimum loss for the given PXY and it is called the Bayes loss.

I The Bayes loss is usually not zero
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Bayes loss for (binary) classification

I Fix x and assume PY |X known. Then:
I Label y will have probability PY |X (y |x) at this x .
I No deterministic guess f (x) for y will make the classification error EP

Y |X=x
[L01(y , f (x))] (unless

PY |X=x is itself deterministic)
I Best guess minimizes the probability of being wrong. This is achieved by chosing the most

probable class
y
⇤(x) = argmax

y

PY |X (y |x) (11)

I The probability of being wrong if we choose y
⇤(x) is 1 � p

⇤(x), where p
⇤(x) = maxy PY |X (y |x).

I The Bayes classifier is y
⇤(x) as a function of x and its expected loss is the Bayes loss

L
⇤
01 = EPX

[1� p
⇤(X )] = EPX

[1�max
y

P[Y |X ]] (12)

This shows that the Bayes loss is a property of the problem, via L and PXY , and not of any
model class or learning algorithm.
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Example

In a classification problem where the class label depends deterministically of the input, the
Bayes loss is 0. For example, classifying between written English and written Japanese has
(probably) zero Bayes loss.

Example

Consider the least squares loss and the following data distribution: PY |X ⇠ N(g(X ),�2). In
other words, the Y values are normally distributed around a deterministic function g(X ). In
this case, optimal least squares predictor is the mean of Y given X , which is equal to g(X ).
The Bayes loss is the expected squared error around the mean, which is �2. Exercise what is the

expression of the Bayes loss if PY |X ⇠ N(g(X ),�(X )2)?

Exercise What is the Bayes loss if (1) P(Y |X ) ⇠ N((�⇤)TX ,�2
I ) and the loss is LLS ; (2)

P(X |Y = ±1) ⇠ N(µ±,�2
I ) and the loss is L01 (for simplicity, assume X 2 R, µpm = ±1, � = 1); (3)

give a formula for the Bayes loss if we know P(X |Y = ±1),P(Y ), Y 2 {±1} and the loss is L01. (4) Give

an example of a situation when the Bayes loss is 0.
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Bias and variance: definitions (never to be used again)

Preliminaries
I What we have a data source PXY and a class of predictors F
I From PXY we sample i.i.d. DN of size n. Hence DN ⇠ P

n

XY
. []

Bias and Variance as in Intro Stat Theory
I We want to estimate a parameter ✓ 2 ⇥ ✓ R
I We use DN to obtain estimator ✓̂DN

which is a function of DN .
I DN is random, hence so is ✓̂DN

.
I Bias= (✓̂DN

) = EPn [✓̂DN
]� ✓

I Variance= VarPn (✓̂DN
)

Both Bias and Variance are computed under the distribution from which we sampled DN ,
denoted by P

n.

IBias and Variance for us
I We use DN to estimate f̂N 2 F

f̂DN
= argmin

f2F
L̂(f ,DN) (15)

I DN is random, hence so if f̂N .

I Main di↵erences
1. f̂ is a function!
2. We are interested in the predictions and not the parameters of f̂ .

I Several proposals to define bias and variance exist.
I Bias and variance are properties of F .

What we need to know in this course is qualitative





S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

II
.1

1

Lecture Notes II.1 – Bias and variance in Kernel Regression

Marina Meilă
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An elementary analysis

Bias, Variance and h for x 2 R
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Kernel regression by Nadaraya-Watson

ŷ(x) =

Pn
i=1

b
⇣

||x�xi ||
h

⌘
y i

Pn
i=1

b
⇣

||x�xi ||
h

⌘ (1)

Let wi =

b

✓
||x�xi ||

h

◆

Pn
i0=1

b

✓
||x�xi

0 ||
h

◆ .

Assumptions

A0 For simplicity, in this analysis we assume x 2 R.
A1 There is a true smooth1 function f (x) so that

y = f (x) + ", (2)

where " is sampled independently for each x from a distribution P", with EP" ["] = 0,

VarP" (") = �2.

A2 The kernel b(z) is smooth,
R
R b(z)dz = 1,

R
R zb(z) = 0, and we denote

�2

b =
R
R z2b(z)dz, �2

b =
R
R b2(z)dz.

In this first analysis, we consider that the values x , x1:N are fixed; hence, the randomness is

only in "1:N .

1
with continuous derivatives up to order 2
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Expectation of ŷ(x) – a simple analysis

Expanding f in Taylor series around x we obtain

f (xi ) = f (x) + f 0(x)(xi � x) +
f 00(x)

2
(xi � x)2 + o((xi � x)2) (3)

We also have

y i
= f (xi ) + "i . (4)

We now write the expectation of ŷ(x) from (1), replacing in it y i and f (xi ) as above. What we

would like to happen is that this expectation equals f (x). Let us see if this is the case.

EPn
"
[ŷ(x)] = EPn

"

"
nX

i=1

wiy
i

#
= EPn

"

"
nX

i=1

wi

⇣
f (xi ) + "i

⌘#
(5)

=

nX

i=1

wi f (x) +
nX

i=1

wi f
0
(x)(xi � x) +

nX

i=1

wi
f 00(x)

2
(xi � x)2 + EPn

"

"
nX

i=1

wi"
i

#

| {z }
=0]

(6)

= f (x) + f 0(x)
nX

i=1

wi (x
i � x) +

f 00(x)

2

nX

i=1

wi (x
i � x)2

| {z }
bias

(7)

In the above, the expressions in red depend of f , those in blue depend on x and x1:N .
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Qualitative analysis of the bias terms

The first order term f 0(x)
Pn

i=1
wi (xi � x) is responsible for border e↵ects.

The second order term smooths out sharp peaks and valleys.
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Qualitative analysis of the bias terms

The first order term f 0(x)
Pn

i=1
wi (xi � x) is responsible for border e↵ects.

The second order term smooths out sharp peaks and valleys.
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Bias, Variance and h for x 2 R
2

The bias of ŷ at x is defined as EPn
X
EPn

"
[ŷ(x)� f (x)].

EPn
X
EPn

"
[ŷ(x)� f (x)] = h2�2

b

✓
f 0(x)p0X (x)

pX (x)
+

f 00(x)

2

◆
+ o(h2) (8)

The variance ŷ at x is defined as VarPn
X
Pn
"
(ŷ(x)).

VarPn
X
Pn
" (ŷ(x)) =

�2

nh
�2

+ o

✓
1

nh

◆
. (9)

The MSE (Mean Squared Error) is defined as EPn
X
EPn

"

h
(ŷ(x)� f (x))2

i
, which equals

MSE(x) = bias2 + variance2 = h4�4

b

✓
f 0(x)p0X (x)

pX (x)
+

f 00(x)

2

◆
+

�2

b

nh
�2

+ . . . (10)

2
After []
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Optimal selection of h

If the MSE is integrated over R we obtain the MISE=
R
R MSE(x)dx .

The kernel width h can be chosen to minimize the MISE, for fixed f , pX and b.
We set to 0 the partial derivative

@MISE

@h
= h3

 !
�
� �

nh2
= 0. (11)

It follows that h5 / 1

n , or

h /
1

N1/5
. (12)

In n dimensions, the optimal h depends on the sample size N as

h /
1

N1/(n+4)
. (13)
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Bias as model (mis)fit

The qualitative meaning of bias we will use has to do with the ability of the model class F to
fit the data DN .

I We measure the misfit by the loss L associated with the task, i.e L̂(f̂DN
,DN)

I Bias(F)= EP(X ,Y )n [L̂(f̂DN
,DN)] (hence, bias is expected empirical loss).

I Richer model classes have less bias

F ⇢ F 0 then bias(F) � bias(F 0)

I Larger data are harder to fit (hence more bias on average)3

3Not trivial, to find a reference.
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Sampling variance

I Intuition: if we draw two di↵erent data sets D,D0 ⇠ PXY (from the same distribution) we
will obtain di↵erent predictors f , f 0. Variance measures how di↵erent the predictions of
f , f 0 can be on average.

I Variance at x = VarPn

XY
(f̂DN

(x)), where the randomness is over the sample DN

I Variance associated with predictor class F is the expectation over PX of the variance at x ,
i.e EPX

[VarPn

XY
(f̂DN

(x))]

I Variance depends on n, F , and the data distribution PXY Exercise If PY |X is deterministic for

all x , does it mean that the variance is 0?
I Richer model classes are subject to more variance

F ⇢ F 0 thenVar(F)  Var(F 0) for any f ⇤
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Variance, bias and model complexity

I Synonyms: rich class = complex model = flexible model = high modeling power = many
degrees of freedom = many parameters

I Evaluating the model complexity4/number of free parameters of a model class F is usually
a di�cult problem!

Non-parametric models # parameters depends on PXY , smoothing parameter and n

Parametric models # parameters NOT always equal to the number of parameters of
f !

Example the classifier f (x) = sgn(↵x), x,↵ 2 R depends on one parameter ↵ but has 1 degrees of
freedom5!

Example the linear classifier and regressor on Rd has (no more than) n + 1 degrees of freedom
Example the complexity of a two layer neural net with m fixed is not known (but there are approximation

results); the number of weights in f is obviously (m + 1)(n + 1) + 1
Example For K-NN, the variance increases when K decreases
Example For pruned Decision Tree, the variance increases whith the number of levels

I The variance of a predictor increases with the complexity of F .
I But complexity is the opposite of bias, so bias decrease with the complexity of F
I This is known as the Bias-Variance tradeo↵

4There are several definitions of model complexity, but this holds for all definitions I know
5See VC-dimension later
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The Bias-Variance tradeo↵

Wanted property unwanted consequence what to do
(for an F) of F not satisfying this property
to fit D well Bias increase complexity
to be robust to sampling noise Variance decrease complexity

The bias-variance tradeo↵ is the observation that the better a predictor class F is able to fit
any given sample, the more sensitive the selected f will be to sampling noise.
In this course we will learn some ways of balancing these desired properties (or these undesired
consequences).
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Examples, examples. . .

Example (K -nearest neighbor classifiers)

The 1-NN can fit any data set perfectly (every data point is it’s own nearest neighbor). But for
K > 1, the K -NN may not be able to reproduce any pattern of ±1 in the labels. Hence its bias
is larger than the bias of the 1-NN classifier. With the variance, the opposite happens: as K

the number of neighbors increases, the decision regions of the K -NN classifier become more
stable to the random sampling e↵ects. Thus, the variance decreases with K .

Example (Linear vs quadratic vs cubic . . . predictors)

The quadratic functions include all linear functions, the cubics include all quadratics, and so
on. Linear classifiers will have more bias (less flexibility) than quadratic classifiers. On the
other hand, the variance of the linear classifier will be lower than that of the quadratic. The
case of regression is even more straightforward: if we fit the data with a higher degree
polynomial, the fit will be more accurate, but the variation of the polynomial f (x) for x values
not in the training set will be higher too.

Example (Kernel regression)
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Examples, examples. . . (2)

The bias-variance tradeo↵ can be observed on a continuous range for kernel regression. When
the kernel width h is near 0, f (x) from Lecture 1, equation (25) will fit the data in the training
set exactly [Exercise: prove this], but will have high variance. When h is large, f (xi ) will be
smoothed between x

i and the other data points nearby, so it may be some distance from y
i .

However, precisely because f (x) is supported by a larger neighborhood, it will have low
variance. [Exercise: find some intuitive explanations for why this is true] Hence, the
smoothness parameter h controls the trade-o↵ between bias and variance.

Example (Regularization)

The same can be observed if one considers equation (??). For � = 0, one choses f that best
fits the data (minimizes L̂. For � ! 1, f is chosen to minimize the penalty J, disregarding the
data completely. The latter case has 0 variance, but very large bias. Between these extreme
cases, the parameter � controls the amount in which we balance fitting the data (variance)
with pulling f towards an a-priori “good” (bias).
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Overfitting and Underfitting

I Bias and variance are properties of the model class F (sometimes toghether with the
learning algorithm – more about this later). They are not properties of the parameters of f
(e.g �), and not of a particular f 2 F .

I Variance decreases to 0 with n, but bias may not. This implies that for larger sample sizes
n, the trade-o↵ between variance and bias changes, and typically the “best” trade-o↵, aka
the best model, will have larger complexity.

I Overfitting= is the situation of small bias and too much variance (i.e. F is too complex).
In practice, if a learned predictor f has low L̂(f ) but significantly higher L(f ), we say that
the model has overfit the data D. (Of course we cannot know L(f ) directly, and a
significant amount of work in statistics is dedicated to predicting L(f ) for the purpose of
chosing the best model.)

I Underfitting=bias is too high, or the model is too simple (a.k.a has too few degrees of
freedom). [Exercise: what do you expect to see w.r.t. L̂(f ) v.s. L(f ) for an underfitted
model?]

Complexity, even though there are variations in its definition, and although it is not known exactly for most

model classes, is at the core of learning theory, the part of statistical theory that gives provable results about

the expected loss of a predictor.


