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Parametric vs non-parametric “

Generative and discriminative models for classification V
Generative classifiers
Discriminative classifiers
Generative vs discriminative classifiers

Loss functions
Bayes loss

Variance, bias and complexity ?

Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.6, Bach Ch.:
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INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading



The “learning” problem

October, 2022

»> Given
» a problem (e.g. recognize digits from m X m gray-scale images)
» a sample or (training set) of labeled data

D= {(X17y1)’ (X27y2)7 9oo (Xn’yn)}

drawn i.i.d. from an unknown Pxy

» model class F = {f} = set of predictors to choose from
» Wanted
» a predictor f € F that performs well on future samples from the same Pxy

P ‘“choose a predictor f € 7" = training/learning

» ‘“performs well on future samples” (i.e. f generalizes well) — how do we measure this? how can
we ‘“guarantee” it?

» choosing F is the model selection problem — about this later
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Bias and variance: definitions (never to be used again)

October, 2022

Preliminaries
» What we have a data source Pxy and a class of predictors F
» From Pxy we sample i.i.d. Dy of size n. Hence Dy ~ P%,,. []
Bias and Variance as in Intro Stat Theory
> We want to estimate a parameter § € © C R
We use Dy to obtain estimator 6p, which is a function of Dy.
Dy is random, hence so is @DN.
Bias: : (Op,) = Epn[6p,] — 6
Variance= Varpn(épN)
Both Bias and Variance are computed under the distribution from which we sampled Dy,
denoted by P".

>
>
>
>

Bia® and Variance for us R
» We use Dy to estimate fyy € F

fp, = argmin[(f,D 15
Dy fgef ( N) (15)

» Dy is random, hence so if fN.

» Main differences
1. f is a function! n
2. We are interested in the predictions and not the parameters of f.
» Several proposals to define bias and variance exist.
» Bias and variance are properties of F.
What we need to know in this course is qualitative
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Bias as model (mis)fit Chyo 1L (nsrad Cane

The qualitative meaning of bias we will use has to do with the ability of the model class F to
fit the data Dy,

»> We measure the misfit by the loss L associated with the task, i.e [(fpm, D)
» Bias(F)= E,D(X}y)n[[(l?’Dm DW)] (hence, bias is expected empirical loss).

» Richer model classes have less bias A ij

F C F' then bias(F) > bias(F")

> Larger data are harder to fit (hence more bias on average)3

. Qualdafive amalyks 2 _ ? =/ (x)
. [/ﬂf"l‘“ nee E(g/ [9<‘+$£X) E[‘Fﬁggj j
: Bied prer Op
r = (v i
Ver (fa,) = .

3Not trivial, to find a reference=> VC d,{‘W\/



Bias as model (mis)fit

October, 2022

The qualitative meaning of bias we will use has to do with the ability of the model class F to
fit the data Dy.

» We measure the misfit by the loss L associated with the task, i.e [(fDN,DN)
» Bias(F)= E W[L(F; , D hence, bias is expected empirical loss).
(F)= Ep(x,v)n[L(fDg, Pp)] ( p p )

» Richer model classes have less bias

F C F' then bias(F) > bias(F")

> Larger data are harder to fit (hence more bias on average)3
W\ "
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3Not trivial, to find a reference.



Sampling variance

October, 2022

» Intuition: if we draw two different data sets D, D’ ~ Pxy (from the same distribution) we
will obtain different predictors f, f’. Variance measures how different the predictions of
f,f’ can be on average.

» Variance at x = Varp)nﬂ/(fDN (x)). where the randomness is over the sample Dy

» Variance associated with predictor class F is the expectation over Px of the variance at x,
i.e Ep, [Varpy (fpy(x))]

» Variance depends on n, F, and the data distribution Pxy Exercise If Py|x is deterministic for
all x, does it mean that the variance is 0?7

» Richer model classes are subject to more variance

F C F' thenVar(F) < Var(F') for anyf*

Rigs Var dpend on T w
/ .?X\/ ?‘ﬁy

* v

’V\/“—’? Br‘aA/’(Of‘Wffar_)
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Variance, bias and model complexity

October, 2022

»> Synonyms: rich class = complex model = flexible model = high modeling power = many
degrees of freedom = many parameters

> Evaluating the model complexity* /number of free parameters of a model class F is usually
a difficult problem!
Non-parametric models # parameters depends on Pxy, smoothing parameter and n
Parametric models # parameters NOT always equal to the number of parameters of
fl
Example the classifier f(x) = sgn(ax), x, & € R depends on one parameter « but has co degrees of
freedom®!
Example the linear classifier and regressor on RY has (no more than) n + 1 degrees of freedom
Example the complexity of a two layer neural net with m fixed is not known (but there are approximation
results); the number of weights in f is obviously (m+ 1)(n+1) +1
Example For K-NN, the vamgincreases when K decreases
Example For pruned Decision Tree, the variance increases whith the number of levels

compleify
» The variance of a predictor increases with the complexity of F.
» But complexity is the opposite of bias, so bias decrease with the complexity of F
» This is known as the Bias-Variance tradeoff
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4There are several definitions of model complexity, but this holds for all definitions | know

5See VC-dimension later



The Bias-Variance tradeoff

October, 2022

Wanted property unwanted consequence what to do

(for an F) of F not satisfying this property rfC(/tQ( 6:

to fit D well Bias increase complexity

to be robust to sampling noise. Variance decrease complexity —

more reafected v
o] he bias-variance tradeoff is the observation that the better a predictor class F is able to fit
any given sample, the more sensitive the selected f will be to sampling noise.
In this course we will learn some ways of balancing these desired properties (or these undesired
consequences).

wn ficed _
2 Yar (F)N
Bias (F) 71 ov £ame
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Examples, examples. . .

Example (K-nearest neighbor classifiers)

The 1-NN can fit any data set perfectly (every data point is it's own nearest neighbor). But for
K > 1, the K-NN may not be able to reproduce any pattern of +1 in the labels. Hence its bias
is larger than the bias of the 1-NN classifier. With the variance, the opposite happens: as K
the number of neighbors increases, the decision regions of the K-NN classifier become more
stable to the random sampling effects. Thus, the variance decreases with K.

Example (Linear vs quadratic vs cubic . .. predictors)

The quadratic functions include all linear functions, the cubics include all quadratics, and so
on. Linear classifiers will have more bias (less flexibility) than quadratic classifiers. On the
other hand, the variance of the linear classifier will be lower than that of the quadratic. The
case of regression is even more straightforward: if we fit the data with a higher degree
polynomial, the fit will be more accurate, but the variation of the polynomial f(x) for x values
not in the training set will be higher too.

Example (Kernel regression)



October, 2022

|
8
E
&
(5]
c
S
]
5
8
[
P
Kl
s
8
g
s

Examples, examples... (2)

The bias-variance tradeoff can be observed on a continuous range for kernel regression. When
the kernel width h is near 0, f(x) from Lecture 1, equation (25) will fit the data in the training
set exactly [Exercise: prove this], but will have high variance. When h is large, f(x') will be
smoothed between x' and the other data points nearby, so it may be some distance from y'.
However, precisely because f(x) is supported by a larger neighborhood, it will have low
variance. [Exercise: find some intuitive explanations for why this is true] Hence, the
smoothness parameter h controls the trade-off between bias and variance.

Example (Regularization)

The same can be observed if one considers equation (??). For A = 0, one choses f that best
fits the data (minimizes L. For A — oo, f is chosen to minimize the penalty J, disregarding the
data completely. The latter case has 0 variance, but very large bias. Between these extreme
cases, the parameter \ controls the amount in which we balance fitting the data (variance)
with pulling f towards an a-priori “good” (bias).



Overfitting and Underfitting

October, 2022

» Bias and variance are properties of the model class F (sometimes toghether with the
learning algorithm — more about this later). They are not properties of the parameters of f
(e.g B), and not of a particular f € F.

» Variance decreases to 0 with n, but bias may not. This implies that for larger sample sizes
n, the trade-off between variance and bias changes, and typically the "best” trade-off, aka
the best model, will have larger complexity.

» Overfitting= is the situation of small bias and too much variance (i.e. F is too complex).
In practice, if a learned predictor f has low L(f) but significantly higher L(f), we say that
the model has overfit the data D. (Of course we cannot know L(f) directly, and a
significant amount of work in statistics is dedicated to predicting L(f) for the purpose of
chosing the best model.)

» Underfitting=bias is too high, or the model is too simple (a.k.a has too few degrees of
freedom). [Exercise: what do you expect to see w.r.t. L(f) v.s. L(f) for an underfitted
model?]

Complexity, even though there are variations in its definition, and although it is not known exactly for most
model classes, is at the core of learning theory, the part of statistical theory that gives provable results about
the expected loss of a predictor.
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Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2
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FIGURE 2.11. Test and training error as a function
of model complexity.
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Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 2

Bayes Optimal Classifier

FIGURE 2.5. The optimal Bayes decision boundary
for the simulation example of Figures 2.1, 2.2 and 2.35.
Since the generating density is known for each class,
this boundary can be calculated exactly (Fxercise 2.2).
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1-Nearest Neighbor Classifier

I

£

Q

T

FIGURE 2.3. The same classification example in two
dimenstons as in Figure 2.1. The classes are coded as
a binary variable ( = 0, = 1), and then
predicted by 1-nearest-neighbor classification.



Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

Linear Regression of 0/1 Response

[ g g

FIGURE 2.1. A classification example wn two di-
mensions. The classes are coded as a binary variable
( = 0, = 1), and then fit by linear re-
gresston. The line 1s the deciston boundary defined by
:UTB = 0.5. The orange shaded region denotes that part

of input space classified as , while the blue region
18 classified as



Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two
dimenstons as in Figure 2.1. The classes are coded as
a binary variable ( = 0, = 1) and then fit
by 15-nearest-neighbor averaging as in (2.8). The pre-
dicted class 1s hence chosen by majority vote amongst
the 15-nearest neighbors.
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k — Number of Nearest Neighbors
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Degrees of Freedom — N/k

FIGURE 2.4. Misclassification curves for the simula-
tion example used 1n Figures 2.1, 2.2 and 2.3. A single
training sample of size 200 was used, and a test sample
of size 10,000. The orange curves are test and the blue
are training error for k-nearest-netghbor classification.
The results for linear regression are the bigger orange
and blue squares at three degrees of freedom. The pur-
ple line is the optimal Bayes error rate.
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Lecture Notes Il — Neural Networks
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October, 2020



Two-layer Neural Networks 6——

Multi-layer neural networks

A zoo of multilayer networks

Reading HTF Ch.: 11.3 Neural networks, Murphy Ch.: (16.5 neural nets) and Dive Into Deep
Learning 4.1-4.3
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Two-layer Neural Networks

> The activation function (a term borrowed from neuroscience) is any continuous, bounded
and strictly increasing function on R. Almost-universally, the activation function is the
logistic (or sigmoid)

1
zZ) = —— 1
o) = T o)
because of its nice additional computational and statistical properties. d

» We build a two-layer neural network in the following way:

Inputs Xk k=1 :d ' )(—6'[42

heddaBottom layer!  zj=¢(w/x) j=1:m, w; €R"

Top layer f=¢(B'z) B eR™ ?a
Output f € [0,1] E
In other words, the neural network implements the function lg € dXM/

m m f'f We R
x) = > Bz = > BHd_ wigx) € (—oo0,0) )
j=1

j=1 k=1
lingar
Note that this is just a linear combination of logistic functions.

W

b

LIn neural net terminology, each variable z; is a unit, the bottom layer is hidden, while top one is visible, and the units in
this layer are called hidden /visible units as well. Sometimes the inputs are called input units; imagine neurons or individual
circuits in place of each x, y, z variable.




Output layer options

> linear layer as in (2) f =37, B,z
> logistic layer: in classification f(x) € [0, 1] is interpreted as the probability of the + class.
m m
fx) =628z | = o (D803 wxk) ©)
j=1 Jj=1 J
» softmax layer in multiway classification

The softmax function ¢(z) : R™ — (0,1)™

ek

() = 7z

4
=1 e (4)
» Properties
> 3T ¢i(z) =1 forall z
> for zx >z, j # k ¢u(z) — 1.
ap;
az: = Pwljx — jPk

> derivatives
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Generalized Linear Models (GLM)

A GLM is a regression where the “noise” distribution is in the exponential fami ly.

» yER, y ~ Pg with oo
Po(y) = &P ~Inv® ©)

> the parameter 0 is a linear function of x € RY

0 = BTx (6)

> We denote Ey[y] = p. The function g(u) = 6 that relates the mean parameter to the
natural parameter is called the link function.

The log-likelihood (w.r.t. 3) is
I(8) = InPy(y|x) = Oy —(0) where § = 7 ©)
and the gradient w.r.t. 3 is therefore
Vgl = VolVs(BTx) = (v —n)x (®)

This simple expression for the gradient is the generalization of the gradient expression you
obtained for the two layer neural network in the homework. [Exercise: This means that the
sigmoid function is the inverse link function defined above. Find what is the link function that
corresponds to the neural network.]



Hidden layer options

» sigmoidal functions ¢, tanh
> hinge functions RELU = max(z, 0), softplus = In(1 + €?)

Rechified Linear Unit
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