
Lecture 8: Classification with imbalanced classes and costs

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

November, 2014

Training cost-sensitive classifiers

What is the goal? Performance criteria

Cost-sensitive classifiers

I Sometimes, misclassification error L01 loss is not appropriate for the problem
I Instead, asymmetric (or imbalanced) costs:

I c+ = loss (cost) of misclassifying true +1 as −1 (type II error)
I c− = loss (cost) of misclassifying true −1 as +1 (type I error)

I How shall we train classifiers to minize asymmetric loss functions?
I Some classifiers can take the costs c± as input for training: they are called

cost-sensitive classifiers1

I Examples: CART, SVM, AdaBoost can be modified to “optimize” imbalanced costs
(usually heuristic methods)

I Probabilistic classifiers (for which L = − lnP(Y |X)) cannot be trained with costs
(by definition). But cost can be incorporated after training, as a form of prior or
bias (Examples: Logistic regression, generative classifiers)

1This actually means cost-sensitive trainable classifier.

Cost-sensitive SVM

I Several proposals exist.

I The simplest one: minw,b,ξ
1
2
||w ||2 + C(c+

∑
y i=+ ξi + c−

∑
y i=− ξi) s.t. usual

constraints

I A risk minimization motivated framework [?]

min
w,b,ξ

1

2
||w ||2 + C

c+

∑
y i=+

ξi + (2c− − 1)
∑
y i=−

ξi

 (1)

s.t. wT x i + b ≥ 1− ξi for yi = +1, (2)

wT x i + b ≤
1

2c− − 1
+ ξi for y

i = −1 (3)

assuming c+ ≥ 2c− − 1 ≥ 1.

Cost-sensitive AdaBoost

I Several proposals exist, most of them heuristic.

I A risk minimization motivated framework [?]

Use the exponential loss function

φc+,c− (y , f) =

{
exp(−c+f), y = +1
exp(c−f), y = −1

(4)

instead of the cost-insensitive exponential loss φ(yf) = exp(−yf).

Note that this implies each weak learner is trained in a cost-insensitive manner,
but with weights that emphasize the positive examples.

Imbalanced classes

Problem Binary classification

I In many real-world problems, one class is much more frequent than the other(s).
Usually, the rare class is what makes the problem interesting in first place.

Examples Testing for most diseases, fraud detection, finding splice junctions in the DNA,
face detection in an image, predicting user behavior on the web (most visits to
e.g Amazon don’t end with a purchase).

I Why the special attention?

A1 Let p = P[Y = 1]� 1 be the (true) probability of the rare class. (Running
example, assume p = 0.01 and the sample size N = 10, 000).

Then, the trivial classifier f (x) = −1 has 1− p = 99% accuracy!

I So, if it’s not important to detect the rare class 1 examples, stop reading.

In other words: train a classifier only when it’s important to separate the class 1
data from the others

Alternative performance measures

I True positives rate pTP = #y=+,ŷ=+
#y=+

I False negative rate pFN = #y=+,ŷ=−
#y=+

pTP + pFN = 1

I True negative rate pTN = #y=−,ŷ=−
#y=−

I False positive rate pFP = #y=−,ŷ=+
#y=−

pTN + pFP = 1

I Precision Prec = #y=+,ŷ=+
#ŷ=+

I Recall Rec = pTP

I Fβ= (1+β2)PrecRec

β2Prec+Rec
weigths precision and recall by a coefficient β

Note that 1
Fβ=1

= 1
2

(
1

Prec
+ 1

Rec

)
(harmonic mean)

I F1=
√
PrecRec.

I . . .

I ROC (Receiver Operating Characteristic) curve (later in this lecture)

Imbalanced costs and imbalanced classes

A2 Let c+, c− be the losses (costs) of misclassifying true +1,−1 examples.

I Decision theoretic point of view Take decision that minimizes expected cost for
input x

ŷ = +1 iff P[Y = −1|x]c−︸ ︷︷ ︸
E [cost of y=−1]

< P[Y = +1|x)c+︸ ︷︷ ︸
E [cost of y=+1]

(5)

I When the output of a clasifier represents (an estimator of) P[Y = 1|x] (e.g for
logistic regression), then (5) gives the optimal decision rule.

I In particular, for a generative classifier, that estimates g±(x) ≡ P[X |Y = ±1],
the optimal decision rule is a likelihood ratio

ŷ = 1 iff
g+(x)

g−(x)
≥

(1− p)c−

pc+
= τgenerative (6)

I For discriminative classifiers (previous section)
I interpret f (x) as uncalibrated P[Y = +|x] or
I use cost-sensitive versions

What if c± are not known at the time of training?

I c± may not be known, or may be choices of convenience (e.g. the cost of not
detecting a serious conditions is variable)

I p may also be imprecisely known
I because the sample distribution of classes is not the same as the population distribution

(e.g in clinical trials)
I because the classifier will be deployed on different populations, each with its own class

distribution
I because for very small p, estimating it from a sample has large relative error

Let p = 0.01, N = 10, 000. Then
I E [p̂] = p, Var(p̂) = p(1− p)/N ≈ p/N

I Relative error (p̂) =

√
Var(p̂)
p

≈ 1√
pN

= 0.1

Then

1 the decision rule (5) will depend on a threshold parameter τ to be estimated (or
re-estimated) after the classifier is trained

ŷ = +1 iff P[y = +|x] ≥ τ (7)

2 estimating the performance should be done in a way that is independent of the
threshold τ

The ROC Curve

I Intuitition: if τ > τ ′, then ŷ(τ) ≤ ŷ(τ ′). In words, if the threshold is increased,
some positive ŷ will become negative, and all negative ŷ will stay so. Hence
pTP , pFP are both non-increasing with τ .

I The ROC curve2 plots pTP(τ) vs. pFP(τ) for all τ values between (−∞,∞) [that
make sense]

I Extremes
I for τ very large, pTP = pFP = 0
I for τ very negative, pTP = pFP = 1

I Ideally: there is a τ for which pTP = 1, pFP = 0. Then, the whole ROC curve is
on the boundary of the square [0, 1]× [0, 1].

I AUC denotes the Area under the ROC Curve.
I Ideally: AUC = 1. In all other cases AUC < 1
I AUC ≈ 1 is great
I For random guessing, pTP (τ) ≈ pFP (τ), hence AUC ≈ 0.5.
I Therefore AUC ≈ 0.5 is very bad.

I Classifiers are compared by their AUC on test set

Figure: example of ROC curve

2A term from signal processing.

Practical construction of an ROC curve

1. With cost-sensitive classifiers

I Try different cost ratios
c+
c−

. (E.g, fix c− = 1, change c+)

I For each, train a cost-sensitive classifier, calculate its pTP , pFP on a test set.
This gives a point on the ROC curve.

I Add the points (0, 0), (1, 1). Connect the dots to obtain the ROC curve.

2. With real-valued (cost-insensitive) classifiers

I Some classifiers output (an estimate of) P[Y = +|x] (these are called calibrated).
E.g logistic regression, generative classifiers, logistic output neural networks
(trained with log-likelihood)

I Others output a real valued function f (x). Assumption: f (x)↗ implies
P[Y = +|x]↗ (these are called uncalibrated).
Examples: SVM, discriminative linear and quadratic classifiers, AdaBoost,
Random Forests, any other ensemble classifiers (bagged, stacked)

I Some are ±1-valued classifiers. Examples: K -nearest neighbors, CART.
I First option: turn them into “probabilistic” classifiers. E.g for K-NN, ouput ratio of

majority class over K ; for CART, do the same in the current leaf.
I Second option: Meta-learning (e.g MetaCost algorithm). Use a form of bagging (or

bootstrap) to estimate P[Y = +|x i].

I In either case, given a test set of size N′, sorting i = 1, . . .N′ by f (x i) (in
descending order) lists the test set data in decreasing order of (our estimate of)
P[y i = +|x i].

I No matter what p, c± are, applying (5) can produce N′ + 1 distinct classifiers,
j = 0, . . .N′.

Classifier j sets ŷ [1]:[j] = +1, and the rest −1.

I This gives us N′ + 1 points on the ROC curve, including the ends.

	Training cost-sensitive classifiers
	What is the goal? Performance criteria

