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Problem 1 – How is the K-nearest neighbor classifier affected by sam-
pling noise?

Assume that we have a binary classification problem where x ∈ R2 and PXY =
PY PX|Y , PY (+1) = 0.7, PX|Y=±1 = Normal(µ±, I2) with I2 the unit matrix
of order 2 and µ± = [±1.6 0]T

In this problem we will study by simulation how the decisions of the K-NN
classifier fluctuate when the training set is resampled. Repeat questions a, b,
c,d for K = 1, 3, 7, 11, 15, 19, . . . 40 and optionally for other values of K.

a. Generate simulation data (you aren’t required to show anything for this
question, nor for b,c,d)

1. Sample a test set D̃ of size ñ = 1000 or larger from PXY

2. Implement the K-NN classifier.

Repeat for b = 1 to B with B ≥ 30

(a) Sample a data set Db of size n = 100 from PXY
(b) Denote by fb the K-NN classifier based on Db. Calculate ŷib = fb(x̃

i)
for x̃i ∈ D̃ (The predictions of fb on test sample).

(c) Calculate l̂b = 1
n

∑
i∈Db

1[ŷib 6=yi] for (xi, yi) ∈ Db. (How well does fb
fit the training set)

(d) Calculate Lb the (estimated) expected loss of fb

Lb ≡ L(fb) =
1

ñ

∑
(x̃i,ỹi)∈D̃

1[fb(x̃i)6=ỹi] (1)

b. Calculate the average and variance of the expected losses; denote L =average(Lb).
This is a Monte Carlo estimate of the expected loss of the K-NN on this problem,
when the sample size is n = 100.

c. For each point i in the test set, calculate

pi =

∑B
b=1(ŷib + 1)/2

B
. (2)
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This is the (empirical) probability that point x̃i is labeled +.

Then calculate the (empirical) variance of the labeling of i, i.e. the averaged
variance of f(x̃i).

V =
1

ñ

ñ∑
i=1

pi(1− pi) (3)

d. Calculate l̂ the mean of l̂b.

e. Show how the above statistics depend on K. For the values of K you used,
plot L, l̂, V versus K on the same graph. For L and l̂ also show error bars equal
to stdev(Lb), stdev(l̂b) respectively.

f. Interpret the graphs in e.. Which graphs informs about the variance of f , the
K-NN classfier? What does it show about the influence of K on the classifier
variance?

g. Which graph informs about the bias of f , the K-NN classfier? What does it
show about the influence of K on the classifier bias?

j. Give a formula or algorithm for calculating/estimating the Bayes error L∗ for
this problem. Assume that you have all the information in the first paragraph,
and a computer to run simulations.

Calculate the actual value of L∗ using your method. (Optionally, plot it as a
horizontal line on the graph in question e..)

[Problem 2 – Classifiers in 1 dimension–NOT GRADED]

This homework will make use of the (one-dimensional) data set D contained in
the file hw2-1d-train.dat. The file contains one example x y per row, like this
-2.028238 -1

-4.819767 -1

-4.081050 -1

... Use this data set to answer the questions below.

For this problem and in general: if a result is already in the lecture notes you
can use it as is. No need to derive it again. In particular in b below, specialize
the formula from Lecture 1 to this case. In a, only numerical results required.

a. Assume the distributions g±(x) = PX|Y=±1(x) are normal distributions
N(µ±, 1). Estimate µ± and p = P (Y = 1) from the data.
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b. Estimating a generative classifier (LDA) Denote by fg(x) the LDA
classifier for this problem. Write fg in the form below

fg(x) =

 +1 if x > θg
−1 if x < θg
0 if x = θg

, (4)

find the expression of θg as a function of µ±, p and evaluate its numerical value
from the estimates you obtained in a.

c. Estimating a nearest neigbor (NN) classifier Find the labels of the
points x = 0, 1, 2,−0.1 by NN1 classification using D.

Plot the decision regions of the NN classifier determined by D, i.e. plot the
function fNN (x) ∈ {±1} versus x.

d. Estimating a Linear classifier Show that for x ∈ R any linear classifier
is of the form

fL(x) = sgn(sx− θL) (5)

with s = ±1 and θL ∈ R.

Plot the value of the empirical classification error l̂01 on D as a function of θL
for s = 1.

Then find the s and the θL that minimize the l̂01 on the data set D.

Problem 3 – Kernel regression and its bias

In this problem, the true regression function is f(x) = x2 + 1, and the sampling
density is pX ∝ α

3Normal(0, 0.3
2) + 4

3Normal(1, 0.6
2), when x ∈ [−1, 1] and 0

otherwise. The parameter α needs to be chosen so that this density integrates
to 1.

The file hw2 kr.dat contains n = 300 samples from this density; denote D =
{(xi, yi = f(xi), i = 1 : N}. This problem examines the empirical properties of
the Nadaraya-Watson regressor with Gaussian kernel (b(z) is a standard normal)
and kernel width h = 0.1 and relates them to the known theory.

a. Give the analytic expression, then calculate the value of α.

b. Calculate the values of ŷ(x) the kernel regressor and plot f(x) and ŷ(x) on
[−1.5, 1.5] on the same graph. For the next graphs, keep the x axis of the same
size [−1.5, 1.5], so that they can be compared with this one.

1More precisely by 1-NN classification. Optionally: try 3-NN, 5-NN.
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c. Calculate and plot the error ŷ − f .

d. Plot the data density, pX .

e. On the next graph, plot f ′, (f ′′)2 on x ∈ [−1.5, 1.5], as well as
p′X
pX

on (−1, 1).

f. The theoretical bias of the Nadaraya-Watson regressor is proportional (see

supplementary notes on Course notes page) with bias = f ′
p′X
pX

+ f ′′

2 . Note that
this bias is the expectation of ŷ − f over samples of size n.

Plot on the same graph bias and ŷ−f ; rescale bias by a constant of your choice,
so that the two graphs are comparable (e.g. of the same order of magnitude).
Are the two graphs similar?

g. Is there a border effect at x = +1? Explain why or why not. Is there a
border effect at x = −1? Explain why or why not.

h. Explain the bias observed at x = 0.

Problem 4 – Bayes loss

The data in Problem 2 were generated from two normal distributions with means
µ+ = 2, µ− = −1.2, variance 1, and p = 1/3. Use this true data distribution
and the information in Problem 2 to answer the following questions.

a. Calculate P (Y = 1|x) as a function of x and the true µ+, µ−, p.

b. Then, write the expression of the Bayes classifier f∗, and Bayes loss L∗01 for
this problem, and compute L∗ by numerical integration.

Denote by θ∗ ∈ R the decision boundary of the Bayes classifier f∗. Compute
the value of θ∗?

c. Make a plot of pg+(x) and (1−p)g−(x) on the same graph, where g± are the
probability densities of the two classes given Y . Mark also the locations of µ±
and θ∗, and optionally, if you have solved Problem 2, plot also θg, θL obtained
from data in Problem 2.

[d. – NOT GRADED∗] Derive from Lecture I that P (Y = 1|x) has the form
1/(1 + eax−b). Find the numerical values of a and b. If you do this problem, let
me know.
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