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Problem 1 – Decision regions for the neural network
In this problem, the inputs are of the form [x1 x2]T ∈ R2 and if necessary we introduce the
dummy variable x0 ≡ 1.

a. Consider the following two-layer neural network

f(x) = β0 +
∑
k

βkzk (1)

zk = φ(

2∑
j=0

wjkxj), for k = 1 : K (2)

x =

 x0
x1
x2

 (3)

W = [wjk] =

 1 0 2 2 2
1 1 0 −1 −0.5
−1 1 −1 0 1

× 20 (4)

φ(u) =
1

1 + e−u
the sigmoid function (5)

β0 = −4.9, β1:5 = 1 (6)

Plot the decision regions of this neural network, i.e the regions D± = {x | f(x) ≶ 0} and the
decision boundary {x | f(x) = 0}.

b. Repeat the plots for β0 = −3.9.

Problem 2 – The sigmoid function, logistic regression, and the logit function – NOT
GRADED

These are simple exercises to familiarize yourself with the relationships between these functions.
It’s quite likely that you have encountered them in other courses

Sigmoidφ(u) =
1

1 + e−u
Logitψ(θ) = ln(1+eθ) Logistic regression

P [Y = 1|X = x]

P [Y = 0|X = x]
= θ(x) ≡ βTx

(7)
Here Y ∈ {0, 1} (this simplifies some expressions).

a. Show that φ(−u) = 1− φ(u), φ′(−u) = φ′(u), argmax
u∈R

φ′(u) = 0, maxu φ
′(u) = 1/2.

b. Check also that φ(u) = eu/2/(eu/2 + e−u/2) = eu/(1 + eu).

c. Let Pθ(y) = eθy−ψ0(θ) where ψ0(θ) = lnZ(θ) and Z(θ) is the normalization constant for Pθ.
Show that ψ0 = ψ the logit function.
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d. Calculate Eθ[Y ] and identify it with one of the three functions above.

Problem 3 – Logit loss gradient and Hessian - NOT GRADED
Note that here we switched to y = ±1 The logit loss

L̂logit(w) = ln(1 + e−yw
T x), x, w ∈ Rd, y = ±1 (8)

is the negative log-likelihood of observation (x, y) under the logistic regression model P (y =
1|x,w) = φ(wTx) where φ is the logistic function.

a. Show that the partial derivatives
∂L̂logit

∂wj
,
∂L̂logit

∂xj
for L̂logit in (8) can be rewritten as

∂L̂logit

∂wj
= −(1− P (y|x,w))yxj (9)

∂L̂logit

∂xj
= −(1− P (y|x,w))ywj . (10)

Here xj , wj denote the j-th componet of vector x,w ∈ Rd. The elegant formulas above hold for
a larger class of statistical models, called Generalized Linear Models, as shown in Lecture II

b. Assume now that you have a data set D = {(xi, yi), i = 1 : n}, xi, w ∈ Rd. Show that the
gradient of L̂logit(w;D) is a linear combination of the xi vectors.

c. Calculate the expression of ∇2L̂logit, the Hessian of logit, for a single data point x. Simplify
your result using φ(ywTx) and its derivatives conveniently.
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