STAT 535 Homework 4 Out October 26, 2023 Due November 2, 2023 ©Marina Meilă mmp@stat.washington.edu

Problem 1 – Decision regions for the neural network

In this problem, the inputs are of the form $[x_1 \ x_2]^T \in \mathbb{R}^2$ and if necessary we introduce the dummy variable $x_0 \equiv 1$.

a. Consider the following two-layer neural network

$$f(x) = \beta_0 + \sum_k \beta_k z_k \tag{1}$$

$$z_k = \phi(\sum_{j=0}^2 w_{jk} x_j), \text{ for } k = 1:K$$
 (2)

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}$$
(3)

$$W = [w_{jk}] = \begin{bmatrix} 1 & 0 & 2 & 2 & 2\\ 1 & 1 & 0 & -1 & -0.5\\ -1 & 1 & -1 & 0 & 1 \end{bmatrix} \times 20$$
(4)

$$\phi(u) = \frac{1}{1 + e^{-u}} \text{ the sigmoid function}$$
(5)

$$\beta_0 = -4.9, \ \beta_{1:5} = 1 \tag{6}$$

Plot the decision regions of this neural network, i.e the regions $D_{\pm} = \{x \mid f(x) \leq 0\}$ and the decision boundary $\{x \mid f(x) = 0\}$.

b. Repeat the plots for $\beta_0 = -3.9$.

Problem 2 – The sigmoid function, logistic regression, and the logit function – NOT GRADED

These are simple exercises to familiarize yourself with the relationships between these functions. It's quite likely that you have encountered them in other courses

Sigmoid
$$\phi(u) = \frac{1}{1 + e^{-u}}$$
 Logit $\psi(\theta) = \ln(1 + e^{\theta})$ Logistic regression $\frac{P[Y = 1|X = x]}{P[Y = 0|X = x]} = \theta(x) \equiv \beta^T x$
(7)

Here $Y \in \{0, 1\}$ (this simplifies some expressions).

a. Show that
$$\phi(-u) = 1 - \phi(u), \ \phi'(-u) = \phi'(u), \ \operatorname*{argmax}_{u \in \mathbb{R}} \phi'(u) = 0, \ \max_{u} \phi'(u) = 1/2.$$

b. Check also that $\phi(u) = e^{u/2}/(e^{u/2} + e^{-u/2}) = e^u/(1 + e^u)$.

c. Let $P_{\theta}(y) = e^{\theta y - \psi_0(\theta)}$ where $\psi_0(\theta) = \ln Z(\theta)$ and $Z(\theta)$ is the normalization constant for P_{θ} . Show that $\psi_0 = \psi$ the logit function. **d.** Calculate $E_{\theta}[Y]$ and identify it with one of the three functions above.

Problem 3 – Logit loss gradient and Hessian - NOT GRADED

Note that here we switched to $y = \pm 1$ The logit loss

$$\hat{L}_{\text{logit}}(w) = \ln(1 + e^{-yw^T x}), \, x, w \in \mathbb{R}^d, \, y = \pm 1$$
(8)

is the negative log-likelihood of observation (x, y) under the logistic regression model $P(y = 1|x, w) = \phi(w^T x)$ where ϕ is the logistic function.

a. Show that the partial derivatives $\frac{\partial \hat{L}_{\text{logit}}}{\partial w_j}$, $\frac{\partial \hat{L}_{\text{logit}}}{\partial x_j}$ for \hat{L}_{logit} in (8) can be rewritten as

$$\frac{\partial \hat{L}_{\text{logit}}}{\partial w_j} = -(1 - P(y|x, w))yx_j \tag{9}$$

$$\frac{\partial \hat{L}_{\text{logit}}}{\partial x_i} = -(1 - P(y|x, w))yw_j. \tag{10}$$

Here x_j, w_j denote the *j*-th component of vector $x, w \in \mathbb{R}^d$. The elegant formulas above hold for a larger class of statistical models, called <u>Generalized Linear Models</u>, as shown in Lecture II

b. Assume now that you have a data set $\mathcal{D} = \{(x^i, y^i), i = 1 : n\}, x^i, w \in \mathbb{R}^d$. Show that the gradient of $\hat{L}_{\text{logit}}(w; \mathcal{D})$ is a linear combination of the x^i vectors.

c. Calculate the expression of $\nabla^2 \hat{L}_{\text{logit}}$, the Hessian of $_{\text{logit}}$, for a single data point x. Simplify your result using $\phi(yw^T x)$ and its derivatives conveniently.