
STAT 535 Homework 5
Out November 7, 2023
Due November 16, 2023
©Marina Meilă

mmp@stat.washington.edu

Reminder: you are allowed and even encouraged to use results from previous homeworks, course
notes, lectures withouth proof.

Problem 1 – Descent algorithms for training a neural network
This problem asks you to train a neural network to classify the data sets given on the Assignments
web page. The inputs are d = 2-dimensional, outputs are ±1, one data point/line. Submit the
code for this problem.

Objective to minimize is L̂logit(β,W ) = − 1
n log-likelihood(D|β,W ) and β ∈ Rm+1,W ∈ R(d+1)×m

are the neural net parameters.

Algorithms: steepest descent with fixed step size. You need to implement the algorithm yourself.
[Optional, for extra credit: implement Newton, or run Newton, LBFGS quasi Newton from
library code.]

Dataset D given hw5-nn-train-100.dat

a. Plot the data set in R2, representing each class with a different color or symbol.

b. Based on the plot in a., is it possible to get L̂01 = 0 for m = 2? Explain.

c. Choose a number m ≥ 3 hidden units and train the neural network on the D. Obtain the
best empirical L̂logit you can. Note that larger m values, i.e m ≥ 10 may be easier to train.

Explain how you chose the initial points. It’s ok to plot the data and look at it or even to make
a sketch of the solution you want to find. If you implement more than one algorithm, start them
all from the same initial point.

The training algorithm will converge to a local optimum. It’s OK to look at this local optimum
and try other initial points if the found optimum is bad. (Don’t forget to use the same initial
point for all algos in the results you present in the homework.) It’s also recommended to challenge
the algorithm by giving it random/uninformative initial points. Do not start all the parameters
at 0 [Why?].

Chose the stopping criterion 1− L̂k+1

L̂k
≤ tol with tol = 10−4. If this tolerance cannot be reached

in a reasonable number of steps, set a higher tol and report that value.

d. Describe briefly the implementation details of your algorithms. Size of the fixed step, number
of iterations (and if it converged or not) and final value of loss functions L̂logit and L̂01. Record
also the time each algorithm takes and report it.

[Optional: If you used other algorithms report on those too. If you used line search, report if
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you bracketed the min or not in line search, what line search method you used (you can use code
from other sources to bracket the mininmum, and you can implement another line search method
than Armijo.)]

e. Estimate the value of Llogit, L01 by averaging them on the test set hw5-nn-test.dat for the
final classifier obtained. Optionally, compute these values at each iteration and plot them in the
graphs for f..

f. Plot the values of L̂logit, L̂01 and the respective costs Llogit, L01 on the test set vs. the
iteration number k. Make two separate plots for the two costs. If you have computed the test
set costs at each iteration, plot these too on the respective graphs.

g. Plot the final decision region superimposed on the data.

[h. Optional but encouraged] Plot (some of) the β parameters vs k; on a separate plot, show
trajectories of β parameters coming from different initializations.

Please make clear, well-scaled, well labeled graphs.

Problem 2 – Regularization is monotonic w.r.t. λ
Let Jλ(w) = L̂(w) + λ

2 ||w||
2 be a regularized objective functions, where w are the parameters.

For example, the linear ridge regression from Problem 3. Let λ1 > λ2 > 0 and denote w1,2 =
argminwJλ1,2

the optimal solutions for λ1, respectively λ2, with w1 6= w2, and assume further
that Jλ1,2

have unique global minima.

a. Prove that ||w1|| < ||w2|| whenever w1,2 6= 0.

b. Prove also that L̂(w1) > L̂(w2).

In other words, imposing more regularization reduces the regularized quantity ||w||, and increases
the un-regularized one (i.e., the loss).

Problem 3 – Ridge regression
In this problem you will perform ridge regression on the function f∗(x) = 0.1x2 +x+ 1 on [0, 1].
In the file hw5 rr.dat you will find a set of n (xi, yi) values with yi = f∗(xi).

a Let f(x) = β0 + β1x be the predictor of y; β0, β1 will be estimated by Ridge Regression with
regularization parameter λ. Denote β0,1(λ) the result of this estimation. Let the data matrix be
the row vector X = [x1 . . . xn], and define the column vector y = [y1 . . . yn]T

Write the expressions of β0(λ), β1(λ) as functions of X, y, λ.

b Now choose a set of λ values including 0 and n. Calculate β0,1(λ), L̂LS(λ) and J(λ). Plot on
the same graph β0,1(λ) vs λ.

c Plot on the same graph L̂LS(λ) and J(λ) vs λ. Comment on what you observe in the graphs
of b, c.
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Problem 4 – Online linear regression by Stochastic gradient

Consider the linear regression problem with Least Square loss

min
β
E[(y − βTx)2] = min

β
LLS (1)

where y ∈ R, x ∈ Rn, β ∈ Rn. For simplicity we consider the infinite sample version of the
problem, but if you want a variation (ungraded) try also the finite sample version, where we
optimize L̂LS instead.

The function in (1) is a quadratic function that has a closed form solution, but we will pretend
that we don’t know this and investigate the use of (stochastic) gradient descent for this problem.

a. Find the expression of the gradient and Hessian of this problem, i.e ∇LLS(β), ∇2LLS(β).
Express the Hessian as a function of some well known statistical descriptor(s) of the data distri-
bution.

b. Assume that the covariates x are sampled from a Normal distribution with mean 0 and non-
singular covariance Σ (known). Describe and motivate a reasonable way to find the λ parameter
of the Stochastic Gradient algorithm based on this assumption.

c. Write the expression of d = ∂LLS(y,βT x)
∂β . Show that the direction of descent d is along x, i.e.

d = αx for some scalar α, not necessarily positive. What does the scaling of x represent from a
statistical modeling point of view?

e. Write in pseudocode the Stochastic Gradient Descent algorithm to optimize this prob-
lem. Assume that λ is known.

For practice, ungraded Repeat the problem with an added regularization term C
2 ||β||

2.
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