Let $\hat{L}^w(f) = \sum_{i=1}^N w_i L(y_i, f(x^i))$ weighted loss

Algorithm AdaBoost

Assume \mathcal{B} contains functions b taking values in [-1,1] or $\{\pm 1\}$

Input M, labeled training set \mathcal{D}

Initialize f = 0

 $w_i^1 = \frac{1}{N}$ weight of datapoint x_i

for k = 1, 2, ... M

- 1. "learn classifier b^k for \mathcal{D} with weights w^{k} ", $b^k = \operatorname{argmin}_{\mathcal{B}} \hat{L}_{01}^{w^k}(b)$
- 2. compute error $\varepsilon^k = \sum_{i=1}^N w_i^{k} \frac{1-y_i b^k(x_i)}{2}$ 3. set $\beta^k = \frac{1}{2} \ln \frac{1-\varepsilon^k}{\varepsilon^k}$
- 4. compute new weights $w_i^{k+1} = \frac{1}{Z^k} w_i^k e^{-\beta^k y_i b^k(x_i)}$ where Z^k is the normalization constant that makes $\sum_{i} w_{i}^{k+1} = 1$

Output $f(x) = \sum_{k=1}^{M} \beta^k b^k(x)$