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First choice
15 responses

@ Clustering - kmeans and mixtures
@ Clustering - spectral
—> (@ NN as Gaussian processes -> new
results for large NN
@ Boosting
@ [SVM-->] Random Fourier Features -->
Double descent

@ Model selection: Crossvalidation, AIC,
BIC, Structural risk minimization
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Lecture V: Support Vector Machines

Marina Meila
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Linear SVM'’s /

The margin and the expected classification error
Maximum Margin Linear classifiers
Linear classifiers for non-linearly separable data

Non linear SVM S

The “kernel trick”
Kernels
Prediction with SVM

—

- xtensions
L; SVM
Multi-class and One class SVM

SV Regression

o Lin SIM
?(5('):: NJ)(,‘FB
_ “&‘Ma/\-l:j %MM %

Reading HTF Ch.: Ch. 12.1-3, Murphy Ch.: Ch 14 (14.1,14.2-14.2.4 kernels, 14.4 and
equations (14.28,14.29) kernel trick, 14.5.1.—3 Support Vector Machines), Bach Ch.: 7.1-7.4,

7.7

Additional Reading: C. Burges - “A tutorial on SVM for pattern recognition”
These notes: Appendices (convex optimization) are optional.
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Non-linear SVM

How to use linear classifier on data that is not linearly separable? =
An old trick
1. Map the data x1" to a higher dimensional space -‘-

x — z = ¢(x) € H,with dim H >> n.

)= wk+b

2. Construct a linear Zlassifier w’ z + b for the data in #H

In other words, we are implementing the non-linear classifier

f(x) = WT¢(X) +b = wio1(x) + wagda(x) + ... + Wmom(x) + b (31)
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Example -+ T

» Data {(x,y)} below are not linearly separable
x Lyl - +
-1 -1 (D -1 -1 1
4 1 1Tl 1 1
+ 1 a1 a1
1 1 1 1 1 1
» We map them to 3 dimensions by

z = ¢(x) = [x1 x2 x1x2].

»> Now the classes can be separated by the hypeplane zz = 0 (which happens to be the
maximum margin hyperplane). Hence,

» w=1[001]\(a vector in H)
> H=0
> and the classification rule is f(¢(x)) = w’ ¢(x) + b.
» If we write f as a function of the original x we get
f(x) = xix

a quadratic classifier.



Non-linear SV problem X‘s‘"ﬁaoﬁ) COMMO["’ — Scajgiad

» Primal problem minimize %||W||2 sty (wTé(x))\+ b) —1 >0 for all i.

» Dual problem W, (P('X[')> (: dOT d
"o rgifz‘:a, Za oejyyjq&(x) o(xj) st o ZOfor all i and Zy a;i=0" (32
EP(\L‘) (?O“ »
N_‘C/\,\J: Gj = ¢(Xi)T¢(XJ) and G—dlag{y1 "} G diag {ylz"}. (33)

> G,-j has been redefined in terms of ¢
» Dual problem

1 —
max1Ta — EaTGa st.a;>0,y'a=0 (34)
«@

> Same as (19)!
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Non Lingar SVM

1. Clwoere cf
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The “Kernel Trick”
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d idea The result (34) is the celebrated kernel trick of the SVM literature. We can make the
following remarks.

1. The ¢ vectors enter the SVM optimization problem only trough the Gram matrix, thus
only as the scalar products ¢(x') T ¢(x;). We denote by K(x, x") the function

Kix,x') = K(x',x) = ¢(x)7é(x) (35)

K is called the kernel function. If K can be computed efficiently, then the Gram matrix G
can also be computed efficiently. This is exactly what one does in practice: we choose ¢
implicitly by choosing a kernel K. Hereby we also ensure that K can be computed
efficiently.

2. Once G is obtained, the SVM optimization is independent of the dimension of x and of
the dimension of z = ¢(x). The complexity of the SVM optimization depends only on n
the number of examples. This means that we can choose a very high dimensional ¢
without any penalty on the optimization cost.

3. Classifying a new point x. As we know, the SVM classification rule is

n n
fx) = wio(x)+b = > aiy'o(x) o(x) = > aiy’K(x',x) (36)
i=1 i=1
Hence, the classification rule is expressed in terms of the support vectors and the kernel

only. No operations other than scalar product are performed in the high dimensional space
H.
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Kernels

The previous section shows why SVMs are often called kernel machines. If we choose a kernel,
we have all the benefits of a mapping in high dimensions, without ever carrying on any
operations in that high dimensional space. The most usual kernel functions are

K(x,x") = (1+xTx")P the polynomial kernel of degree p
K(x,x") = tanh(ox"x’ — B)  the “neural network” kernel
NS
K(x,x') = e o the Gaussian or radial basis function (RBF) kernel

it's ¢ is co-dimensional

%
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The Mercer condition

» How do we verify that a chosen K is is a valid kernel, i.e that there exists a ¢ so that
K(x,x') = ¢(x)To(x')?
» This property is ensured by a positivity condition known as the Mercer condition.
Mercer condition

Let (X, 1) be a finite measure space. A symmetric function K : X x X, can be written in the
form K(x,x") = ¢(x) T ¢(x’) for some ¢ : X — H C R™ iff

/ K(x,x")g(x)g(x")du(x)du(x") > 0 for all g such that ||g(x)||r, < co (37)
X2
» In other words, K must be a|positive semidefinite operator on L;

> If K satisfies the Mercer condition, there is no guarantee that the corresponding ¢ is
unique, or that it is finite-dimensional.
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Quadratic kernel
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-1

-2

-3

5 -4 3 -2 -1 ) 1 2 3 4

» C-SVM, polynomial degree 2 kernel, n = 200, C = 10000 _ _
» The two ellipses show that a constant shift to the data (x’ <— x' + v, v € R") can affect
non-linear kernel classifiers.
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RBF kernel and Support Vectors
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Prediction with SVM
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» Estimating b

» For any i support vector, wixi+ b= yi because the classification is tight
> Alternatively, if there are slack variables, w’ x' + b = y'(1 — &)
» Hence, b=y'(1 - &) —w'x

P For non-linear SVM, where w is not known explicitly, w = Zj ajyjcb(xj) Hence,
b=y'(1-¢&)— >3/ oy K(x',x’) for any i support vector

» Given new x

9(x) = sgn(w’x+b) = sgn <Z iy K(x', x) + b> . (38)

i=1
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L1-SVM

>

If the regularization ||w||?, based on k norm, is replaced with the /; norm ||w]||1, we

obtain what is known as the Linear L1-SVM

mi2||w||1+CZ§,- sty'(w/x' +b)>1—¢, &>0foralli=1:n  (39)

The use of the /; norm promotes sparsity in the entries of w

The Non-linear L1-SVM is

f(x) = Z(afr —+ o{)y’K(x,-,x) + b classifier (40)
i
;nii?b Z(ajf +a7)+ CZ&,- sty f(x') >1—¢;, &,aF >0foralli=1{(4l)
This formulation enforces ozi+ =0or ai_ =0 for all i. If we set w; = ozl.+ — ai_, we can

write f(x) = 3°; wjy'K(x',x) + b, a linear classifier in the non-linear features K(x', x).
The L1-SVM problems are Linear Programs

The dual L1-SVM problems are also linear programs

The L1-SVM is no longer a Maximum Margin classifier
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Multi-class and One class SVM

Multiclass SVM
For a problem with K possible classes, we construct K separating hyperplanes W,Tx + b, = 0.

K
o 1 C
minimize 5 Z [lw: |2 + - Zéi” (42)
r=1 ir
s.t. wytx" +b,i > w X"+ b +1— & foralli=1:n, r# y' (43)
fi,r 2 0 (44)

One-class SVM This SVM finds the “support regions” of the data, by separating the data from
the origin by a hyperplane. It's mostly used with the Gaussian kernel, that projects the data on
the unit sphere. The formulation below is identical to the v-SVM where all points have label 1.

S 1 2 1
minimize EHWH —vp+ . Zf{,- (45)
s.t. wix'+b > p—¢ (46)
& =0 (47)
p>0 (48)



SV Regression
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The idea is to construct a “tolerance interval” of +¢ around the regressor f and to penalize
data points for being outside this tolerance margin. In words, we try to construct the
smoothest function that goes within ¢ of the data points.

S 1 2 b e
minimize EHWH + Czi:(fi +&) (49)
s.t. €+ §,+ >wix+b—y > —e— & (50)
¢ >0 (51)
p >0 (52)

The above problem is a linear regression, but with the kernel trick we obtain a kernel regressor
of the form f(x) = Y_,(a; — ol )K(x',x) + b
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Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 12

"B+ Po=0

FIGURE 12.1. Support vector classifiers. The left
panel shows the separable case. The decision boundary
1S the solid line, while broken lines bound the shaded
mazximal margin of width 2M = 2/||8||. The right panel
shows the nonseparable (overlap) case. The points la-
beled & are on the wrong side of their margin by an
amount & = ME;; points on the correct side have
§; = 0. The margin is mazimized subject to a total
budget ) & < constant. Hence Y & is the total dis-
tance of points on the wrong side of their margin.
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Training Error: 0.270
TestError:  0.288
Bayes Error:  0.210 © !

Training Error: 0.26 -
TestError:  0.30 -

FIGURE 12.2. The linear support wvector bound-
ary for the mixture data example with two overlapping

N £ 292 1 12 1 P Y m. 1 71 _  _  71°



Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 12

SVM - Degree-4 Polynomial in Feature Space

Training Error: 0.180
Test Error:  0.245 -

Bayes Error:  0.210 :::::

SVM - Radial Kernel in Feature Space

Training Error: 0.160
TestError:  0.218
Bayes Error:  0.210 © ::

FIGURE 12.3. Two nonlinear SVMs for the max-
ture data. The upper plot uses a 4th degree polynomaial
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LR - Degree-4 Polynomial in Feature Space

Training Error: 0.190 ™
TIYN

Test Error:  0.263 ' "\

Bayes Error: i

LR - Radial Kernel in Feature Space

Training Error: 0.150
Test Error: 0.221 ::

Bayes Error:  0.210 ©:iiiiiiyiiiiiiiiiiiiiiiiiiiin (O HERE:

FIGURE 12.5. The logistic regression versions of the
SVM models in Figure 12.3, using the identical kernels



Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 12

Test Error Curves — SVM with Radial Kernel

Y=05 vy=1 ~v=0.5 ~v=0.1

I est Error

1e-01 1e+01 1e+03 1e-01 1e+01 1e+03 1e-01 1e+01 1e+03 1e-01 1e+01 1e+03

C

FIGURE 12.6. Test-error curves as a function
of the cost parameter C for the radial-kernel SVM
classifier on the maxture data. At the top of each
plot is the scale parameter ~ for the radial kernel:
K (z,y) = exp—||lz — y||>. The optimal value for C
depends quite strongly on the scale of the kernel. The
Bayes error rate is indicated by the broken horizontal
lines.



