

M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

1

Lecture VI – Wide multilayer networks and the Neural Tangent Kernel

(NTK)

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

October, 2023

M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

2

The Neural Tangent Kernel (NTK)

Wide networks and Gaussian Processes

The NTK is constant during training
Example – regression and LLS

Wide and deep networks and classification

M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

3

Notation

I Neural network predictor f (x ; ✓), where x 2 Rd

I For each layer l = 1 : L of dimension ml , with x0 ⌘ x , and zL ⌘ f (x)

z
l+1 = W

l+1
x
l + b

l+1
x
l+1 = �(zl+1) (1)

Here xl,l+1, zl+1, bl+1 are column vectors Wl+1 is a ml+1 ⇥ml matrix, �() is the
non-linearity/activation function.

I The weights

W
l

ij
= �ww

l

ij
/
p
ml , b

l

j
= �b�

l

j
, Known as NTK parametrization (2)

I Parameter vector ✓ = vector{w1:L,�1:L} 2 Rp initialized i.i.d. ⇠ N(0, 1)
I �w,b are fixed hyper-parameters, 1/

p
ml normalizes the expected norm of Wl columns

I Loss L(y , f)

I We want to analize the behavior of this network f () at initialization and during training,
when m1:L very large

I Three approximations help analysis
(A1) continuous time training, called gradient flow
(A2) m1:L ! 1 in the wide limit, we can apply the Central Limit Theorem (CLT), and Gaussian

Processes
(A3) parameters ✓ do not change much during training, i.e. ✓t � ✓0 is small

M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

4

The Gradient Flow

I Assume training by gradient descent on L̂ =
P

i
L(y i , f (xi)

I The gradient of L̂

r✓L̂ =
X

i

@L
@f

(y i , f (xi ; ✓))r✓f (x
i , ✓) = r✓fDrf LD 2 Rp (3)

where rf LD = [@L@f (y
i , f (xi ; ✓))]i=1:n 2 Rn, r✓fD = [r✓f (xi , ✓)]i=1:n 2 Rp⇥n

I Assume (A1) gradient descent with infinitezimal time steps. In other words, the
parameters evolve by an ordinary di↵erential equation

✓̇ = �⌘r✓fDrf LD 2 Rp (4)

ḟ =
pX

j=1

@f

@✓j

@✓j
@t

= (r✓f)
T ✓̇ 2 R (5)

ḟD = �⌘ (r✓fD)Tr✓fD| {z }
G

rf LD 2 Rp (6)

I G ⌘ r✓f
T

Dr✓fD ⌘ (X,X) is a Gram matrix!
I Therefore, we define the Neural Tangent Kernel (NTK) by

(x , x 0) = r✓f (x ; ✓)
Tr✓f (x

0; ✓) (7)

M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

5

Gradient flow and NTK – summary

✓̇ = �⌘r✓fDrf LD 2 Rp

ḟD = �⌘Grf L 2 Rp

(x , x 0) = r✓f (x)
Tr✓f (x

0)

I fX, r✓fX, G depend only on the inputs X, ✓
I rf L depends only on the correct outputs Y, and predicted outputs, i.e. on Y and ✓

I This holds for any predictor! So what is special about neural networks?

I First, we will analyze for very wide neural networks with random parameters (e.g. at
initialization)

I Then, we will analyze what happens during training under assumption (A3)

M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

6

Wide NN’s Gaussian Process (GP)

I This is about f0, a NN initialized with Gaussian independent parameters. For simplicity, we
denote it as f .

I Assume ✓1:L�1 fixed, only WL, bL random as in (2)
I Recall f (x) = WLxL�1(x) + bL for any x with xL�1 2 RmL

I f (x) = sum of mL�1 i.i.d. random variables, hence f (x) ⇠ Normal by CLT, for mL�1 large
I Randomness is over weights WL, bL!!!
I We have E [f (x)] = 0 and

Cov(f (x), f (x 0)) = E [(WL
x
L�1+b

L)(WL(x 0)L�1+b
L)] =

�2
w

mL�1
(xL�1)T (x 0)L�1+�2

b
⌘ L(x , x 0)

(8)
where xL�1, (x 0)L�1 2 RmL�1 are the outputs of the (L� 1)-th layer for inputs x , x 0

I L is a positive definite kernel Exercise Prove this.
I f (x) is a random function of x
I The distribution of f (x) defined as above, is called a Gaussian Pocess

I More generally, it can be shown [Jacot, Gabriel, Hongler, NeurIPS 2018] that, when all ✓
parameters are sampled as in (??), f0(x) ⇠ GP(0,L)

Q1 What is the kernel L of this GP
Q2 This is all nice, but ✓ changes during training. What can we say about ✓t , ft after training?

M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

7

Q1: Idea.

I From (8), for layer l = 1 : L we have

l (x , x 0) = E [zl
j
(x)zl

j
(x 0)] =

�2
w

ml�1
(xl�1)T (x 0)l�1 + �2

b
(9)

with xl�1 = �(zl�1). Note also that zl
j
are i.i.d. so it does not matter which j we choose.

I In particular, 1(x , x 0) =
�2
w

m1
xT x 0 + �2

b
is deterministic

I . . . and l is random for l > 1.
I However, when ml ! 1, 1

ml�1
(xl�1)T (x 0)l�1 ! E [⇤]

I More specifically, this expectation can be written as

E [⇤] =

Z Z
�(z)�(z 0)Normal(

z

z 0

�
; 0, l�1

x,x0) dz dz
0. (10)

In the above z, z 0 represent the zl�1(x), zl�1(x 0) variables, sampled from the level l
Normal distribution, which has covariance given by l�1, namely

l�1
x,x0 =

l�1(x , x) l�1(x , x 0)
l�1(x 0, x) l�1(x 0, x 0)

�
. (11)

I Hence, the limit of l (x , x 0) when m1:l ! 1, is a deterministic kernel for all l .
[Jacot, Gabriel, Hongler, NeurIPS 2018] derived this recursion (next page).

M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

8

Q1: A recursive expression for the Neural Tangent Kernel

[Jacot, Gabriel, Hongler, NeurIPS 2018]

I L fixed, m ! 1
I Simplified expression for m0:L = m, �w = �b = 1
I Then the NTK ⌘ L is defined recursively by layer

1(x , x 0) = ⌃1(x , x 0), ⌃1(x , x 0) =
1

m
x
T
x
0 + 1 (12)

l+1(x , x 0) = l (x , x 0)⌃̇l+1(x , x 0) + ⌃l+1(x , x 0), (13)

with ⌃l+1(x , x 0) = L�
⌃l (x,x0)

, (14)

⌃̇l+1(x , x 0) = L�
0

⌃l (x,x0)
, (15)

and L�⌃ = E [�(X)�(X 0)] with(X ,X 0) ⇠ N(0,

⌃(X ,X) ⌃(X ,X 0)
⌃(X ,X 0) ⌃(X 0,X 0)

�
(16)

I In other words, at level l + 1, X ⌘ xl ,X 0 ⌘ (x 0)l are sampled from a GP with kernel ⌃l ,
and ⌃l+1(x , x 0), ⌃̇l+1(x , x 0) represent their (scalar) covariance after passing through the
non-linearities �, �0 (where �0 is the derivative of �)

M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

9

Summary so far

I Now, we understand the random intialization of wide networks, with L layers.

f0 ⇠ GP(0, L) (17)

where L is a kernel that depends only on � (and �2
b,w)

What next?
I Analysis of training by linearization
I Then, the NTK limit for L ! 1 and its relevance for classification and regression

M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

10

The Linearized Network f lin

Notation: ✓0,t , f0,t = parameters, predictor at times 0, t

I Here we use (A3), the assumption that the parameters ✓ change little during training.
Extensive evidence supports this assumption.

I First order Taylor expansion of ft around f0

f
lin
t (x) = f0(x) +r✓f0(x)

T (✓t � ✓0) (18)

non-linear in x , linear in ✓

r✓f
lin
t = r✓f0 (19)

(x , x 0) = r✓f0(x)
Tr✓f0(x

0) constant during training (20)

G0 ⌘ X,X (21)

✓̇t = �⌘r✓f0(X)
Trf L(Y, f lint (x)) (22)

ḟ
lin
t (x) = �⌘

T

(x ,X)G0| {z }
depends on ✓0

rf L(Y, f lint (x)) (23)

M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

11

NTK during training – empirical evidence

M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

12

Linearized Network dynamics for LLS

I For example, for LLS(y , f) =
1
2 (f � y)2, rf LLS(f , y) = f � y . In this case, equations

(22),(23) are a linear system and have an analytic solution.

✓t � ✓0 = �r✓f0(X)
T
G

�1
0

⇣
I � e

�⌘G0t
⌘
(f0(X)� Y) (24)

f
lin
t (X) =

⇣
I � e

�⌘G0t
⌘
Y + e

�⌘G0t f0(X) (25)

f
lin
t (x) = (x ,X)TG�1

0

⇣
I � e

�⌘G0t
⌘
Y

| {z }
µ(x)

+ f0(x)� (x ,X)TG�1
0

⇣
I � e

�⌘G0t
⌘
f0(x)

| {z }
�(x)

(26)

Notes:
I if G0 � 0 then e

�⌘G0t ! 0 for t ! 1
I in discrete time t = 0, 1, 3, . . . replace e

at with (1 � a)t .
Sketch of proof: ln(1 � a)t = t ln(1 � a) ⇡ t(�a) for a small; therefore e

�at ⇡ (1 � a)t .
I f

lin
t

(x) = f0(x) + (x,X)TG�1
0

⇣
I � e

�⌘G0t
⌘
(Y � f0(X))

Exercise Prove (24),(25),(26) from (22),(23)

