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Lecture VI — Wide multilayer networks and the Neural Tangent Kernel

(NTK)
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Notation

» Neural network predictor f(x;0), where x € R4
» For each layer | = 1: L of dimension m;, with x0 = x, and z! = f(x)

ZI+1 _ Wl+lxl+b/+1 X/+1 — ¢(Z/+1) (1)

Here x//*1 z/+1 pl*+1 are column vectors W/t is a my 1 x m; matrix, ¢() is the
non-linearity /activation function.
» The weights

W,-JI- = awwé-/\/m,, bJ/- = UbB}, Known as NTK parametrization (2)

> Parameter vector § = vector{w't gL} € RP initialized i.i.d. ~ N(0,1)
» o, are fixed hyper-parameters, 1/,/m; normalizes the expected norm of W! columns
» Loss L(y, f)

» We want to analize the behavior of this network () at initialization and during training,
when my.; very large
» Three approximations help analysis
(A1) continuous time training, called gradient flow
(A2) my.. — oo in the wide limit, we can apply the Central Limit Theorem (CLT), and Gaussian
Processes
(A3) parameters 6 do not change much during training, i.e. 6; — 0g is small
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The Gradient Flow «.9") fneg

> Assume training by gradient descent on £ = SL(y F(x)
> The gradient of £

Vol = Z%(yf,f(xf;e))vgf(xf,e) = VofpVilp ERP (3)
where ViLp = [22(y', f(x';60))]iz1.0 € R", Vgfp = [Vof(x',0)]i=1.n € RPX"

> Assume (Al) gradlent descent with infinitezimal time steps. In other words, the
parameters evolve by an ordinary differential equation

4+

6 9 —_— 9 = —anfDVf[/D e RP (4)
. of 96;
ft«“' . fo= %E’(Vﬂe ER &— OGN X (5)
o~ fo
fp = —n(ngD) VofpVeLp €RP & ax XM)
N

G Vo,c*e(

> G = Vof] Vofp = k(X,X) is a Gram matrix!
» Therefore, we define the Neural Tangent Kernel (NTK) by

k(x,x") = Vgf(x;0)TVaf(x;0) 7)






Gradient flow and NTK — summary

é = —nVefpVeLlp € RP
fo = —nGV¢L ERP
K(x,x") = Vef(x)TVyf(x')

> fx, Vyfx, G depend only on the inputs X, 6
» V(L depends only on the correct outputs Y, and predicted outputs, i.e. on Y and 6

» This holds for any predictor! So what is special about neural networks?

> First, we will analyze x for very wide neural networks with random parameters (e.g.~at
initialization)

» Then, we will analyze what happens during training under assumption (A3)
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Wide NN's Gaussian Process (GP)

» This is about fy, a NN initialized with Gaussian independent parameters. For simplicity, we
denote it as f.

> Assume %L1 fixed, only WL, bt random as in (2)
> Recall f(x) = WExt=1(x) + bt for any x with xt—1 € R™L

» f(x) = sum of m;_; i.i.d. random variables, hence f(x) ~ Normal by CLT, for m;_; large
» Randomness is over weights WL, bL111
»> We have E[f(x)] =0 and

Ugv L—INT( \L—1, 2 __ L
— = (x") (X)) o = R (x

mp_1
(8)

Cov(f(x), f(x")) = E[(WExE by (W) E 1 b)) =

where xt=1 (x)t=1 € R™.~1 are the outputs of the (L — 1)-th layer for inputs x, x’
kL is a positive definite kernel Exercise Prove this.
f(x) is a random function of x

» The distribution of f(x) defined as above, is called a Gaussian Pocess

» More generally, it can be shown [Jacot, Gabriel, Hongler, NeurlPS 2018] that, when all 6
parameters are sampled as in (??), fo(x) ~ GP(0,xl)

Q1 What is the kernel kb of this GP
Q2 This is all nice, but 6 changes during training. What can we say about 0;, f; after training?

X
=
z
T
&
£
H
Z
g
@
2
2
T
S
g
°
g
S
P
T
3
g
5
=




X
=
z
T
&
£
H
Z
g
@
=
2
T
S
2
°
g
S
P
T
3
g
5
=

Q1: ldea.

>
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From (8), for layer /| =1: L we have

0_2
w(xx") = ElZ(x)z/(x)] = T:(X'_l)T(X')'_1+U§ 9

with x'~1 = #(z/~1). Note also that zj’ are i.i.d. so it does not matter which j we choose.

2
In particular, k(x,x’) = %"IVXTX, + o2 is deterministic
...and ! is random for / > 1.
However, when m; — oo, ﬁ(x"l)-r(x’)’_1 — E[¥]
More specifically, this expectation can be written as

E[+] = //d)(z)(b(z’)Normal({ Zz, ];o, Kl ) dzdz. (10)

In the above z, z’ represent the z/=1(x), z/~1(x’) variables, sampled from the level /

Normal distribution, which has covariance given by /=1, namely

-1 I—1 /
-1 _ K (sz) K (X)X)

Rt = |: KX, %) kTN, X)) (11)
Hence, the limit of x/(x,x’) when my.; — oo, is a deterministic kernel for all /.

[Jacot, Gabriel, Hongler, NeurlPS 2018] derived this recursion (next page).



Q1: A recursive expression for the Neural Tangent Kernel & 42;‘)('24

[Jacot, Gabriel, Hongler, NeurlPS 2018]
» | fixed, m — oo
> Simplified expression for mg,; = m, oy =0op =1
» Then the NTK x = sl is defined recursively by layer

K1, x) = THx,x), Zlx,x) = %XTXI-‘,-]. (12)
XY = kG x))EF (X, X)) + 2 (x, X)), (13)
with Y (x,x') = LZ,(X oy (14)
ZI+I(X X ) - Lz/(x X/) (15)

and LY = E[6(X)e(X)] with(X, X') ~ N(o,[ =0 ) zz((jfgf('?)(l]e)

> In other words, at level / +1, X = x!, X" = (x")! are sampled from a GP with kernel ¥/,
and T (x, x"), £M*1(x, x") represent their (scalar) covariance after passing through the
non-linearities ¢, ¢’ (where ¢’ is the derivative of ¢)
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Summary so far

» Now, we understand the random intialization of wide networks, with L layers.

fo ~ GP(0, kb)

L

: 2
where k" is a kernel that depends only on ¢ (and O’bﬂw)

What next?
> Analysis of training by linearization
» Then, the NTK limit for L — oo and its relevance for classification and regression

(17)



The Linearized Network fir

Notation: 6o, fo, = parameters, predictor at times 0, t

» Here we use (A3), the assumption that the parameters 6 change little durmg training.
Extensive evidence supports this assumption.

» First order Taylor expansion of f; around fj

fi(x) = folx)+ Vofo(x)T (6 — o) (18)
non-linear in x, linear in 6
Vof™ = Vefy NTK(©2) (19)
k(x,x") = Vo(x)TVef(x'F  constant during training (20)
Go = KxX Gram mauxa®, (21)
ﬁm G‘) — b = —nVeR(X) VLY, £(x)) (22)
- T .
o) = =0 k(G X) @ VAL(Y, 77 (X)) (23)
——

Jom (B) —

depends on 0

from (6) — }f?XB - = GVl (3, )




NTK during training — empirical evidence

= = =50
0.40 n=500,t=0 04 n

n =500, t = 200 n=1000

n=10000, t=0 — n=ePs e
0.35 7 n =10000, t = 200 —=- n=c,{P10, Poo}

0.2

004,

fa(sin(y), cos(y))

Figure 1: Convergence of the NTK to a fixed limit Figure 2: Networks function fy near convergence
for two widths n and two times ¢. for two widths n and 10th, 50th and 90th per-
centiles of the asymptotic Gaussian distribution.



Linearized Network dynamics for Lyg

» For example, for Lrs(y, f) = %(f —¥)?, V¢Lrs(f,y) = f —y. In this case, equations

(22),(23) are a linear system and have an analytic solution.

b= = —Voh(X)7 Gy (1-e %) (H(X)-Y) (24)
) = (1—e 7% Y 4 e %t y(X) (25)
fin) = k(x,X)7G5t (/ - e*"Gof) Y+ fo(x) — k(x, X) T Gy ! (/ - e*"Gof) 2 (626)
w(x) v(x)
Notes:
» if Gy > 0 then e~ "7%! — 0 for t — co
> in discrete time t = 0,1, 3, ... replace °* with (1 — a)".

Sketch of proof: In(1 — a)* = tIn(1 — a) &~ t(—a) for a small; therefore e ~°" ~ (1 — a)".
> IR () = fo(x) + K(x, X) T Gyt (/ - e—”Gof) (Y — (X))
Exercise Prove (24),(25),(26) from (22),(23)



