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NTK during training – empirical evidence



M
ar
in
a
M
ei
la
:
L
ec

tu
re

V
I
–
W

id
e
n
et
w
or
ks

an
d
N
T
K

13

Wide and deep neural networks for classification – Basic quantities and

assumptions

[Radhakrishnan, Belkin, Ulher, 2022]

I This paper studies the limits of wide neural networks ml ! 1 for all l = 1 : L when the
depth L ! 1

I It is already known that for regression L ! 1 is NOT OPTIMAL
I Since the NTK depends only of the activation function �, the limit shall only depend on �

as well.
I In particular, the limit depends on � only through the following

A = E [�(Z)] when z ⇠ N(0, 1)
A0 = E [�0(Z)] when z ⇠ N(0, 1)

B = E [(�0(Z))2] when z ⇠ N(0, 1)

I Classifier f (x) = limL!1 sgnYG�1L(X, x) with G = [L(xi , xj )]i,j=1:n.

I Additional assumptions
I Data X ✓ Sd

+, vectors of norm 1 with all entries � 0.
I Simplifying assumptions on NTK parameters (e.g. �w = �b = 1)
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Case A 6= 0: Networks implement majority vote

Theorem (Proposition 1 in [Radhakrishnan, Belkin, Ulher, 2022])

If there is a function 0 < c(L) < 1 so that

lim
L!1

L(x , x 0)

c(L)
= c1 > 0 for any x 6= x

0
, and lim

L!1

L(x , x)

c(L)
6= c1, (27)

then

lim
L!1

f (x) = sgn
nX

i=1

y
i

MAJORITY CLASSIFIER (28)

I What �’s satisfy theorem? ReLU, all � with B 6= 1.
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Case A = A0
= 0: Networks implement 1-nearest neighbor

Theorem (Theorem 3 in [Radhakrishnan, Belkin, Ulher, 2022])

Given x , assume w.l.o.g. that xT x1 = maxi=1:n x
T xi .

lim
L!1

L(x , xi )

L(x , x1)
= 0. (29)

and

lim
L!1

f (x) = sgny1
1-nn (30)
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Case A = 0, A0 6= 0: Networks implement singular kernel classifier

Theorem (Theorem 1 in [Radhakrishnan, Belkin, Ulher, 2022])

lim
L!1

L(x , x 0)

(A0)2L(L+ 1)
=

R(kx � x 0k)
kx � x 0k↵

, (31)

with ↵ = �4 log A
0

log B0 and R() � 0, bounded, and R(u) > � around 0.

I if ↵ > 0, R(kx�x
0k)

kx�x0k↵ is singular kernel

I Computationally not a problem: if data x1:n distinct, G0 is well defined
I If x = xi , set f (x) = y i .
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Optimality of singular kernel classifier

Theorem (Theorem 2 in [Radhakrishnan, Belkin, Ulher, 2022])

If A = 0, A0 6= 0 and ↵ = �d then limL!1 f (x) is Bayes-optimal.

I What activations � satisfy this theorem?

�opt(z) =
1

2d/4
z3 � 3z
p
6

+
p

1� 21�d/2 z
2 � 1
p
2

+
1

2d/4
z for d � 2. (32)
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Optimal singular kernels for d = 4, 8, 16, 32
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Summary

b when A 6= 0, limL!1 L(x , x 0) = 0 for x 6= x 0, and f (x) = 0 is vanishingly small (useless
for regression), but sgnf (x) can be optimal for classification

c Singular kernel ↵ > d ,↵ < d , majority vote kernel, and 1-nn kernel
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Limits of some activation functions

�opt Bayes classifier
ReLU majority vote

sigmoid 1
1+e�z

� 1
2 1-nearest neighbor
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There is more than one way to average predictors
Bayesian averaging
Bagging
Stacking
Mixtures of Experts
Forward Fitting and Backfitting

Reducing bias: Boosting
AdaBoost
Properties on the training set

Reading HTF Ch.: 15. Random Forests, 16. Ensembles of predictors, 8. Model inference and
averaging, 10. Boosting, Murphy Ch.: 16.3, 16.3.1 Generalized Additive models (ignore the
regularization, for ”smoother” read ”minimize loss function”), 16.4.1-5 [and optionally 8]
Boosting, 3.2.4 Bayesian model averaging, 16.6.3, 16.6.1 Ensembles of predictors, Bach Ch.:
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There is more than one way to average predictors

Classification will be the running exaple here, but most results hold for other prediction
problems as well.
Denote B = {b} a base classifier family
Averaging:

f (x) =
MX

k=1

�kbk (x) (1)

f is real-valued even if the bk ’s are ±1 valued
Why average predictors?

I to reduce bias

I to compensate for local optima (a form of bias)

I to reduce variance

I if b1, b2, . . . bM make independent errors, averaging reduces expected error (loss). We say
that b1 and b2 make independent errors ,
P(b1 wrong | x) = P(b1 wrong | x , b2 wrong)

I because the bk functions are given: real world domain experts (weather prediction), a set
of black-box classifiers (from a software package), a set of [expert designed] features
(speech recognition, car/human recognition) each of them weakly informative of y

I because B is a set of (simple) “basis functions” and we need a more complex predictor in
our task
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Averaging is not always the same thing

Depending how we choose B, b1, b2, . . . bM and �1,�2, . . .�M , we can obtain very di↵erent
e↵ects.
We will examine

I Bayesian averaging (briefly)
I Mixtures of experts (briefly)
I Bagging (briefly)
I Backfitting (briefly)
I Stacking (see Murphy)
I Boosting
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Reducing bias: Boosting

Base classifier family B has large bias (e.g. linear classifier, decision stumps) but learning
always produces b that is better (on the training set) than random guessing.
Preconditions for boosting

1. Learning algorithm accepts weighted data sets. Training minimizes

L̂w01(b) =
nX

i=1

wiL01(y
i , b(xi )) with

nX

i=1

wi = 1.

2. B is a weak classifier family. For any D and any weights w1:n there can be found b 2 B
such that the training error of b on D is bounded below one half.

0 < L̂w01(b)  � <
1

2

Idea of boosting: train a classifier b1 on D, then train a b2 to correct the errors of b1, then b3

to correct the errors of b2, etc.
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Example

Boosting with stumps

Stumps are decision trees with a single split.
(below, c1 . . . c4 denote the coe�cients �1:4).
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AdaBoost Algorithm

AdaBoost Algorithm
Assume B contains functions b taking values in [�1, 1] or {±1}

Input M, labeled training set D
Initialize f = 0

w1
i = 1

n weight of datapoint xi
for k = 1, 2, . . .M

1. “learn classifier for D with weights wk” ) predictor bk

2. compute error "k =
Pn

i=1 w
k
i

1�yi b
k (xi )

2

3. set �k = 1
2 ln 1�"k

"k

4. compute new weights wk+1
i = 1

Zk w
k
i e

��k yi b
k (xi ) where Zk is

the normalization constant that makes
P

i w
k+1
i = 1

Output f (x) =
PM

k=1 �
kbk (x)
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Remarks

1. If b(x) 2 {±1} then y i b(xi ) 2 {±1}, and 1�y i b(xi )
2 = 1 if an error occurs and 0 otherwise.

Thus, "k in step 2 adds up the weights of the errors.
If b(x) 2 [�1, 1] then the errors contribute di↵erent amounts to the loss depending on
their margin.

2. In both cases, "k 2 [0, �], � < 0.5 by the weak learner property of B
3. �k > 0 whenever "k < 1/2.
4. If b 2 {±1}, then step 4 can be written equivalently (up to a multiplicative constant)

wk+1
i =

(
1
Zk w

k
i if bk (xi ) = yi

1
Zk w

k
i e

2�k
if bk (xi ) 6= yi

(7)

This form corresponds to the DiscreteAdaBoost algorithm, the first AdaBoost
algorithm published, which assumed b(x) 2 {±1}. As we shall see later, modern boosting
algorithms dispense with the assumption b 2 [�1, 1] too.
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An interpretation of the weights

wk+1
i =

1

n

Y

k0k

e��k0 yi b
k0 (xi )

Zk0
=

e�yi f
k (xi )

n
Q

k0k Z
k

(8)

I weight of example i at step k is proportional to e�yi f
k�1(xi ) the exponential of its negative

margin
I Examples that have been hard to classify get exponentially high weights.
I Examples that are classified with high margins get vanishingly small weights.
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The normalization constant is an average loss

If we sum both sides of (8) over i we obtain

1 =

P
i e

�yi f
k (xi )

n
Q

k0k Z
k
, (9)

or
Y

k0k

Zk =

P
i e

�yi f
k (xi )

n
⌘ L̂�(f

k ) (10)

where
�(z) = e�z . (11)

and
L�(y , f (x)) = �(yf (x)) (12)

Hence, the r.h.s of (10) is the average over the data set of the exponential loss L�.

The function � decreases with the margin, thus decreasing L̂� will produce a better classifier
(on the training set). In this sense, L� is an alternative loss function for classification.
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L̂� decreases exponentially with M

For simplicity, we show this in the special case b(x) 2 {±1} for all b 2 B.

Zk =
nX

i=1

wk
i e

��k (yi b
k (xi )) (13)

= e�
k X

i=err

wk
i

| {z }
"k

+e��k X

i=corr

wk
i

| {z }
1�"k

(14)

= e�
k
"k + (1� "k )e��k

(15)

=

s
1� "k

"k
"k +

s
"k

1� "k
(1� "k ) = 2

q
(1� "k )"k  � (16)

where � < 1 depends on � the maximum error. It follows that

L̂�(f
k ) =

kY

k=1

Zk0  �k (17)



M
a
r
in
a
M
e
il
a
:
L
e
c
t
u
r
e
V
I
I:

C
o
m
b
in
in
g
p
r
e
d
ic
t
o
r
s
–
P
a
r
t
I

D
e
c
e
m
b
e
r
,
2
0
2
3

22

The training set error L̂01 decreases exponentially with M

Note that �(z) � 1z<0 for all z (see also figure ??). Therefore

L̂(f k ) =
1

n

nX

i=1

1[yi f k (xi )<0] (18)


1

n

nX

i=1

e�yi f
k (xi ) = L̂�(f

k )  �k (19)

In other words, the training error L̂(f k ) is bounded by a decaying exponential. Moreover, since

L̂(f k ) 2 {0, 1/n, 2/n, . . . 1}, it follows that after a finite number of steps, when �k0 < 1/n, the
training error will become 0 and the training data will be perfectly classified!
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The test set error and overfitting

I Do NOT take M = k0. The number of steps M for good generalization error is often
much larger than k0 (and sometimes smaller).

I Below is a typical plot of L̂ and L (which can be estimated from an independent sample)
vs the number of boosting iterations.
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Boosting as descent in function space
Boosted predictors are additive models
AdaBoost is steepest descent on training set
A statistical view of boosting

More surrogate losses, more boosting algorithms
Why the e

�yf loss? other surrogate losses
GradientBoost

Practical remarks and theoretical results
Practicalities
[Theoretical results]

Extensions of boosting
Boosting for multiclass and ranking
[Multiplicative updates algorithms]

Reading HTF Ch.: 15. Random Forests, 16. Ensembles of predictors, 8. Model inference and
averaging, 10. Boosting, Murphy Ch.: 16.3, 16.3.1 Generalized Additive models (ignore the
regularization, for ”smoother” read ”minimize loss function”), 16.4.1-5 [and optionally 8]
Bosting, 3.2.4 Bayesian model averaging, 16.6.3, 16.6.1 Ensembles of predictors, Bach Ch.:
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AdaBoost is steepest descent on training set

We will show that boosting is a form of (stochastic) gradient descent on the surrogate loss L̂�

(we already know from Part I that AdaBoost pushes L̂� asymptotically towards 0).

Assume we want to minimize the surrogate loss L̂� on the training set. For any finite D, f and

b 2 B a↵ect L̂� only via the n-dimensional vectors of their values on D (which we will
abusively denote by f , b)

f =

2

664

f (x1)
f (x2)
. . .

f (xn)

3

775 b =

2

664

b(x1)
b(x2)
. . .

b(xn)

3

775 (4)

Thus, L̂�(f ) is a function of n variables, with partial derivatives

@L̂�
@f (xi )

=
@

@f (xi )

"
1

n

nX

i=1

�(y i
f (xi ))

#
=

1

n
y
i�0(y i

f (xi )) = �
1

n
y
i
e
�y

i
f (xi ), (5)

since �0(z) = �e
�z . Imagine a boosting step as trying to find a change �b in f which

minimizes the loss L̂�(f + �b). This minimization is equivalent to maximizing the decrease in

loss L̂�(f )� L̂�(f + �b).
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The direction of descent

The change in L� along “direction” b with step size � is approximately

L̂�(f )�L̂�(f +�b) ⇡ �

⇣
rfL̂�(f )

⌘
T

(�b) =
X

i

✓
1

n
y
i
e
�y

i
f (xi )

◆
(�b(xi ))

�
/

X

i

y
i
b(xi )wi (6)

(denoting/recalling wi / e
�yi f (x

i )).
The direction of steepest descent b is therefore the maximizer of

argmax
b2B

X

i

wi yi b(x
i ) (7)

where in the sum on the r.h.s we recognize the r of AdaBoost.

I If b(xi ) = ±1 values, then 1� yi b(xi ) = 1[i error ], and maximizing (7) is the same as

minimizing the weighted training error L̂w01.I If b takes real values, then yi b(xi ) is the margin of example i , and maximizing (7) is a
natural objectiv for many training algorithm. Exercise Can you find examples of

algorithms/predictors which do/don’t maximize the loss in (7)?

More generally (we will use this later), the direction b maximizes

X

i

yi b(x
i )[��0(yi f (x

i ))] (8)

Finding the direction b is equivalent with step 1 of the AdaBoost algorithm, training a weak
classifier on the weighted data. The resulting b can be seen as the best approximate of the
gradient of L� in B.
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The line minimization

Now let us do line minimization: find the optimal step size � in direction b. For this we take
the derivative of L̂�(f + �b) w.r.t � and set it to 0.

dL̂�(f + �b)

d�
=

X

i

yi b(x
i )�0(yi f (x

i )) = �

X

i

yi b(x
i )e�yi f (x

i )��yi b(x
i ) (9)

� is the (unique) root of X

i

wi yi b(x
i )e��yi b(x

i ) = 0 (10)

If • b(x) 2 {�1, 1} then line optimization gives �k from AdaBoost
• b(x) 2 [�1, 1] then line optimization gives �k from AdaBoost approximately
• b(x) 2 (�1,1) then � amounts to a rescaling of b and is redundant.
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Calculating �k
for binary b’s

Assume b(x) 2 {±1}.
In this case y

i
b
(
x
i ) = ±1 and we obtain

dL̂�(f + �b)

d�
=

X

i corr

wi e
��

�

X

i err

wi e
� = 0 (11)

0 = (1�

X

i err

wi )� (
X

i err

wi )

| {z }
"k

e
2� (12)

� =
1

2
ln

1� "k

"k
(13)

This is the �k coe�cient of step 4 of AdaBoost

Hence, the AdaBoost algorithm can be seen as minimizing the loss L�(f ) by steepest descent
in the function space spanB.
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RealAdaBoost

The third case corresponds to the RealAdaBoost in the FHT variant, described here for
completeness
Real AdaBoost Algorithm (in the FHT variant)

Assume B contains real-valued functions
Input M, labeled training set D

Initialize f = 0
w

1
i

= 1
n
weight of datapoint xi

for k = 1, 2, . . .M
“learn classifier for D with weights w

k
) b

k”

compute new weights w
k+1
i

= w
k

i
e
�y

i
b
k (xi ) and normalize them to sum to 1

Output f (x) =
P

M

k=1 b
k (x)


