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NTK during training — empirical evidence
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Figure 1: Convergence of the NTK to a fixed limit Figure 2: Networks function fy near convergence
for two widths n and two times ¢. for two widths n and 10th, 50th and 90th per-
- centiles of the asymptotic Gaussian distribution.
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Wide and deep neural networks for classification — Basic quantities and
assumptions

[Radhakrishnan, Belkin, Ulher, 2022]

» This paper studies the limits of wide neural networks m; — oo for all / =1 : L when the
depth L — oo

> It is already known that for regression|L — oo is NOT OPTIMAL

» Since the NTK depends only of the activation function ¢, the limit shall only depend on ¢
as well. 9 K

» In particular, the limit depends on ¢ only through the following

A = E[¢(2)] when z ~ N(0,1)
A = E[¢/(2)] when z ~ N(0,1)

> Classifier f(x) = lim; 00 sgnYG1xbE(X, x) with G = [kL(x, %)]; j=1:n-

» Additional assumptions

» Data X C Si, vectors of norm 1 with all entries > 0.
» Simplifying assumptions on NTK parameters (e.g. o, = op = 1)
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Case A # 0: Networks implement majority vote

Theorem (Proposition 1 in [Radhakrishnan, Belkin, Ulher, 2022])

If there is a function 0 < ¢(L) < oo so that

L / L
Limw % = ¢ >0 forany x # x', and LI_l)n;o KC(()Z)X) # c1, (27)
then
n
lim f(x) =sgn y'  MAJORITY CLASSIFIER (28)
L—oo ey

» What ¢'s satisfy theorem? RelLU, all ¢ with B # 1.
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Case A= A’ = 0: Networks implement 1-nearest neighbor

Theorem (Theorem 3 in [Radhakrishnan, Belkin, Ulher, 2022])

T,1 Tyl

Given x, assume w.l.o.g. that x' x* = maxj—1., X
L i
. RE(x,x")
| = 0. 29
Ll>mo<> rL(x, x1) (29)
and
lim f(x) = sgny? 1-nn (30)
L— o0



Case A =0, A’ # 0: Networks implement singular kernel classifier

Theorem (Theorem 1 in [Radhakrishnan, Belkin, Ulher, 2022])

whoGx")  R(lIx = x|))
lim = ; (31)
15 (APE(L+ 1) llx = x"[|«
with o = —4:252: and R() > 0, bounded, and R(u) > & around 0.
> if a >0, R‘,‘(HX ’H‘U) is singular kernel

> Computatlonally not a problem if data x1'" distinct, Gy is well defined
> If x = x', set f(x) =



Optimality of singular kernel classifier

Theorem (Theorem 2 in [Radhakrishnan, Belkin, Ulher, 2022])
IfA=0, A’ #0 and a = —d then lim|_, o, f(x) is Bayes-optimal.

» What activations ¢ satisfy this theorem?

3
d)opt( ) _ 23—/42 + /1_21 d/2

1
6 2d/4z

for d > 2. (32)

d=2 A=-1.5e-13 A'=0.71 B=2 a=2 d=3 A=-5.6e-06 A'=0.59 B=2 a= 3
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Optimal singular kernels for d = 4, 8, 16, 32

d=4 A=-7.3e-06 A'=0.5 B=2 a=4 d=8 A=-9.6e-06 A'=0.25 B=2 o=8
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Summary

2z~ N(0,1) (b) Regression Classification
Infinitely Wide and Deep Classifiers R R =
A=E[¢(2)]
A =El§(2)] -
= s
— TestEx. « TestEx.
Train. Ex. Train. Ex.
7 g e . e
AT#0 N T e e
I (c) 1-Nearest Neighbor
‘Optimal Singular Kernel El ]
Majority Vote Kernel
Majority Vote Classifiers 1-Nearest Neighbor Classifiers Singular Kernel Classifiers Nearest NelghborKemel
@
(Not Optimal) (Not Optimal) (Include Optimal Classifiers) ~ oLt
" = # . Training Examples
| ® : Test Examples.
Examples: 8 Vote
ReLU 21 Hermite Polynomial Cubic Polynomial <
.
21 23+ (V6-3)z ®
$(x) = max(0,z o= )= 2=
@) ) o) =22 o) = XS R
0
le— 2|

b when A #0, lim;_, mL(x,x’) =0 for x # x’, and f(x) = 0 is vanishingly small (useless
for regression), but sgnf(x) can be optimal for classification
c Singular kernel o > d,ax < d, majority vote kernel, and 1-nn kernel




Limits of some activation functions

¢°P' Bayes classifier
ReLU majority vote

. . i 1 .
sigmoid e 2 1-nearest neighbor
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December, 2023

There is more than one way to average predictors
Bayesian averaging
Bagging
Stacking
Mixtures of Experts
Forward Fitting and Backfitting

10
Reducing bias: Boosting €— NoT MQV'R&’ g—
AdaBoost
Properties on the training set

Reading HTF Ch.: 15. Random Forests, 16. Ensembles of predictors, 8. Model inference and
averaging, 10. Boosting, Murphy Ch.: 16.3, 16.3.1 Generalized Additive models (ignore the
regularization, for "smoother” read "minimize loss function”), 16.4.1-5 [and optionally 8]
Boosting, 3.2.4 Bayesian model averaging, 16.6.3, 16.6.1 Ensembles of predictors, Bach Ch.:

5
o

|
g
3
g
5
=
£
5
5
v
>
¢
2
g
§
Y
P
]
-
a
]
]
-




There is more than one way to average predictors

December, 2023

Classification will be the running exaple here, but most results hold for other prediction
problems as well.

Denote B = {b} a base classifier family

Averaging:

M
f(x) = > B () 1)
k=1

f is real-valued even if the bX’s are +1 valued
Why average predictors?

» to reduce bias

> to compensate for local optima (a form of bias)
> to reduce variance
>

if by, ba, ... by make independent errors, averaging reduces expected error (loss). We say
that b; and b, make independent errors <
P(b1 wrong|x) = P(b1 wrong | x, by wrong)

> because the b¥ functions are given: real world domain experts (weather prediction), a set
of black-box classifiers (from a software package), a set of [expert designed] features
(speech recognition, car/human recognition) each of them weakly informative of y

> because B is a set of (simple) “basis functions” and we need a more complex predictor in
our task
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Averaging is not always the same thing

December, 2023

Depending how we choose B, b!, b2,...bM and 81, 32,...8M, we can obtain very different
effects.

We will examine

Bayesian averaging (briefly)

Mixtures of experts (briefly)

Bagging (briefly)

Backfitting (briefly)

Stacking (see Murphy)

Boostin
g H
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Reducing bias: Boos’fing 2= )‘ b0) ‘S WMalk
Task = clarvificabon CILW\&W

December, 2023

wu 1\11
Base classifier family B has large bias (e.g. linear classifier, decision stumps) butfeﬂarning
always produces b that is better (on the training set) than random guessing.
Preconditions for boosting

1. Learning algorithm accepts weighted data sets. Training minimizes
L(b) = ZWILm(y b(x')) with ZW, = 1.

2. Bis a weak classifier family. For any D and any weights w., there can be found b € B
such that the training error of b on D is bounded below one half.

R 1
0 < Ifi(h) <5< 5

.

Idea of boosting: train a classifier b! on D, then train a b? to correct the errors of b!, then b3
to correct the errors of b?, etc E— — s

TReN' Test foy - 2, £boe

L=t
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Example

Boosting with stumps

Stumps are decision trees with a single split.
(below, ¢; ... ¢4 denote the coefficients (1.4).

2
af

c1=1.5 :@‘ c2=1.3
+
— _+ + (o) o N
_ . _ -0
c4=1.6
+
+ -+
- -0
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Marina Meila: Lecture VII: Com

AdaBoost Algorithm

weak camifior family {6er s
ADABOOST(ALGORITHM
Assume \ B contains functions b taking values in [—1,1] or {£1}
Input M, labeled training set.D -
Initialize f =0

Wl-l =1 weight of datapoint x;
n
for k=1,2,...M u{p
1. ‘ “learn classifier for D with weights wk” = predictor b¥
— v b(x:
2. compute erroriek = "7 ) Wl.kly’fb(x’)
k_ 1), 1=cF
3. set 8% = 5 In7¢
. Ky k(s .
4. compute new weights Wl-k+1 = %w{‘e‘ﬁ it (i) where Z¥ is

the normalization constant that makes >, Wl-kJrl =1
Output f(x) = Zf’zl Bk bk (x)
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Remarks

1. If b(x) € {£1} then y'b(x") € {£1}, and % = 1 if an error occurs and 0 otherwise.
Thus, € in step 2 adds up the weights of the errors.
If b(x) € [—1,1] then the errors contribute different amounts to the loss depending on
their margin.

2. In both cases, €k € [0,6], § < 0.5 by the weak learner property of B

3. 8% > 0 whenever ek < 1/2.

4. If b € {£1}, then step 4 can be written equivalently (up to a multiplicative constant)

Zewf if b*(x;) = yi @
k .
Lowke™ it () £ v
This form corresponds to the DISCRETEADABOOST algorithm, the first AdaBoost
algorithm published, which assumed b(x) € {£1}. As we shall see later, modern boosting
algorithms dispense with the assumption b € [—1, 1] too.



An interpretation of the weights

December, 2023

—8% yib¥ () —yif ()
kL 1 e i )| el 8
wit = S T = - (8)
n Zk’ n]_[k/gk Z

> weight of example i at step k is proportional to e M) the exponential of its negative
margin

» Examples that have been hard to classify get exponentially high weights.

» Examples that are classified with high margins get vanishingly small weights.

Y ()= margn
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L . Loss
The normalization constant is an average loss T
Lo,

|~

If we sum both sides of (8) over i we obtain N \ B‘S
_nett 2 2w
1= nnk/gkzk ) q ;-FL - (9)
or - l)
gt
A —yif¥(xi
/E - sz:Zfe yif (%) E[¢(fk)=i2€ (10)
? K<k g nj .
wher ! \I\“)
ere o) — e > lal) LT 60(5{((1)
and ni
Lo(y,f(x) = ¢(yf(x)) (12)

Hence, the r.h.s of (10) is the average over the data set of the exponential loss L.

The function ¢ decreases with the margin, thus decreasing [¢ will produce a better classifier
(on the training set). In this sense, L, is an alternative loss function for classification.

u :
Ly < ¥ et ?k;fep'f"
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[¢, decreases exponentially with M

For simplicity, we show this in the special case b(x) € {£1} for all b € B.

7k — Zwk *5 (yib* (x1))

= S e Y W

i=err i=corr
ek 1—ek

= ekt (1 —ak)efﬁk

1—ek , ek P P
\/ At +\/1_8k(1—5)_2\/(1—5)5 <~

where 7 < 1 depends on ¢ the maximum error. It follows that

k
[¢(fk) — sz < 'Yk
k=1

(13)

(14)

(15)

(16)

(17)



December, 2023

5
&
|
]
2
3
8
8
w
L]
5
o
s
g
g
g
3
r
3
s
2
&
s

The training set error Lo1 decreases exponentially with M

Note that ¢(z) > 1,¢ for all z (see also figure ??). Therefore

R 1<
Ly = EE Ly, ke (x) <0] (18)
i=1
1< k ~
< = 00 = [(FF) < 4k 19
< n;e o(f) < v (19)

In other words, the training error [(f") is bounded by a decaying exponential. Moreover, since

L(f%) € {0,1/n,2/n,... 1}, it follows that after a finite number of steps, when 'yko < 1/n, the
training error will become 0 and the training data will be perfectly classified!
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The test set error and overfitting

» Do NOT take M = k°. The number of steps M for good generalization error is often
much larger than k° (and sometimes smaller).

> Below is a typical plot of [ and L (which can be estimated from an independent sample)
vs the number of boosting iterations.

S|
]
0
M>E" beter
0 200 Foo 600 800 1000
oosting iterations &

ﬁo
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Boosting as descent in function space
Boosted predictors are additive models
AdaBoost is steepest descent on training set ==

A statistical view of boosting L s
O
C? = S(lfmaa;e
6——

More surrogate losses, more boosting algorithms
Why the e~ loss? other surrogate losses
GRADIENTBOOST

Practical remarks and theoretical results
Practicalities
[Theoretical results]

Extensions of boosting
Boosting for multiclass and ranking
[Multiplicative updates algorithms]

Reading HTF Ch.: 15. Random Forests, 16. Ensembles of predictors, 8. Model inference and
averaging, 10. Boosting, Murphy Ch.: 16.3, 16.3.1 Generalized Additive models (ignore the
regularization, for "smoother” read " minimize loss function”), 16.4.1-5 [and optionally 8]
Bosting, 3.2.4 Bayesian model averaging, 16.6.3, 16.6.1 Ensembles of predictors, Bach Ch.:
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AdaBoost is steepest descent on training set

We will show that boosting is a form of (stochastic) gradient descent on the surrogate loss [¢
(we already know from Part | that ADABOOST pushes £¢ asymptotically towards 0).
Assume we want to minimize the surrogate loss [4, on the training set. For any finite D, f and

b € B affect [4) only via the n-dimensional vectors of their values on D (which we will
abusively denote by f, b)

f(x') b(x)
2 2
f = £(x*) b — b(x<) (4)
f(x") b(x")
Thus, [¢(f) is a function of n variables, with partial derivatives
8[¢ 0 1< P 1 . P 1 . ig(oi
= i = T£(x] = Zvie(vif(x — =i 7yf(x)7 5
5oy = 5 L;ay (x ))} V) = —ye (%)
since ¢/(z) = —e~Z. Imagine a boosting step as trying to find a change 3b in f which

minimizes the loss [¢(f + Bb). This minimization is equivalent to maximizing the decrease in
loss Ly(f) — Ly(f + Bb).
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The direction of descent
The change in Ly along “direction” b with step size 3 is approximately

o) ~Lotr+06) = = (Vo(n) (58) = 32 [ (17776 (b)) o Sy b (9

(denoting/recalling w; o e=¥if(x)),
The direction of steepest descent b is therefore the maximizer of

argmax cyib(x' 7
g 3wt ™

where in the sum on the r.h.s we recognize the r of ADABOOST.
> If b(x') = +1 values, then 1 — y;b(x’) = Lj error]» @nd maximizing (7) is the same as
minimizing the weighted training error L01
> If b takes real values, then y;b(x') is the margin of example i, and maximizing (7) is a

natural objectiv for many training algorithm. Exercise Can you find examples of
algorithms/predictors which do/don’t maximize the loss in (7)?

More generally (we will use this later), the direction b maximizes
Zy, (=o' (vif (x))] (8)

Finding the direction b is equivalent with step 1 of the ADABOOST algorithm, training a weak
classifier on the weighted data. The resulting b can be seen as the best approximate of the
gradient of Ly in B.
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The line minimization

Now let us do line minimization: find the optimal step size 8 in direction b. For this we take
the derivative of L4(f + 3b) w.r.t 8 and set it to 0.

dLly(f + Bb
¢(7 Zy' x)o' (yif (x')) Zy'b(x e—Vif(x")=Byib(x') (9)
B is the (unique) root of
Z wiyib(x')e Pt = (10)
If o b(x)e{-1,1} then line optimization gives 8% from ADABOOST
e b(x)e[-1,1] then line optimization gives ¥ from ADABOOST approximately

e b(x) € (—o0,00) then 8 amounts to a rescaling of b and is redundant.



Calculating B* for binary b's

November, 2023

Assume b(x) € {£1}.
In this case y'b(x’) = £1 and we obtain

dLy(f + Bb

M — ZWie_ﬁ—ZWieﬂ -0 (11)

dﬂ i corr ierr
0 = (1A= w)-_w)e (12)

ierr ierr

ek

1, 1-—¢k

B o= g (13)

This is the 8% coefficient of step 4 of ADABOOST

Hence, the ADABOOST algorithm can be seen as minimizing the loss Ly (f) by steepest descent
in the function space span B.
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RealAdaBoost

November, 2023

The third case corresponds to the REALADABOOST in the FHT variant, described here for
completeness
REAL ADABOOST ALGORITHM (in the FHT variant)

Assume B contains real-valued functions

Input M, labeled training set D
Initialize =0
Wl-l = % weight of datapoint x’
for k=1,2,...M
“learn classifier for D with weights wk = bk”

. k(s
compute new weights w,.kJrl = Wl.ke y'BE()

Output  f(x) = M, bk(x)

and normalize them to sum to 1
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