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Boosting as descent in function space
Boosted predictors are additive models
AdaBoost is steepest descent on training set
A statistical view of boosting

More surrogate losses, more boosting algorithms
Why the e

�yf loss? other surrogate losses
GradientBoost

Practical remarks and theoretical results
Practicalities
[Theoretical results]

Extensions of boosting
Boosting for multiclass and ranking
[Multiplicative updates algorithms]

Reading HTF Ch.: 15. Random Forests, 16. Ensembles of predictors, 8. Model inference and
averaging, 10. Boosting, Murphy Ch.: 16.3, 16.3.1 Generalized Additive models (ignore the
regularization, for ”smoother” read ”minimize loss function”), 16.4.1-5 [and optionally 8]
Bosting, 3.2.4 Bayesian model averaging, 16.6.3, 16.6.1 Ensembles of predictors, Bach Ch.:
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AdaBoost Algorithm

AdaBoost Algorithm
Assume B contains functions b taking values in [�1, 1] or {±1}

Input M, labeled training set D
Initialize f = 0

w1
i = 1

n weight of datapoint xi
for k = 1, 2, . . .M

1. “learn classifier for D with weights wk” ) predictor bk

2. compute error "k =
Pn

i=1 w
k
i

1�yi b
k (xi )

2

3. set �k = 1
2 ln 1�"k

"k

4. compute new weights wk+1
i = 1

Zk w
k
i e

��k yi b
k (xi ) where Zk is

the normalization constant that makes
P

i w
k+1
i = 1

Output f (x) =
PM

k=1 �
kbk (x)
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AdaBoost is steepest descent on training set

We will show that boosting is a form of (stochastic) gradient descent on the surrogate loss L̂�

(we already know from Part I that AdaBoost pushes L̂� asymptotically towards 0).

Assume we want to minimize the surrogate loss L̂� on the training set. For any finite D, f and

b 2 B a↵ect L̂� only via the n-dimensional vectors of their values on D (which we will
abusively denote by f , b)

f =

2

664

f (x1)
f (x2)
. . .

f (xn)

3

775 b =

2

664

b(x1)
b(x2)
. . .

b(xn)

3

775 (4)

Thus, L̂�(f ) is a function of n variables, with partial derivatives

@L̂�
@f (xi )

=
@

@f (xi )

"
1

n

nX

i=1

�(y i
f (xi ))

#
=

1

n
y
i�0(y i

f (xi )) = �
1

n
y
i
e
�y

i
f (xi ), (5)

since �0(z) = �e
�z . Imagine a boosting step as trying to find a change �b in f which

minimizes the loss L̂�(f + �b). This minimization is equivalent to maximizing the decrease in

loss L̂�(f )� L̂�(f + �b).
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The direction of descent

The change in L� along “direction” b with step size � is approximately

L̂�(f )�L̂�(f +�b) ⇡ �

⇣
rfL̂�(f )

⌘
T

(�b) =
X

i

✓
1

n
y
i
e
�y

i
f (xi )

◆
(�b(xi ))

�
/

X

i

y
i
b(xi )wi (6)

(denoting/recalling wi / e
�yi f (x

i )).
The direction of steepest descent b is therefore the maximizer of

argmax
b2B

X

i

wi yi b(x
i ) (7)

where in the sum on the r.h.s we recognize the r of AdaBoost.

I If b(xi ) = ±1 values, then 1� yi b(xi ) = 1[i error ], and maximizing (7) is the same as

minimizing the weighted training error L̂w01.I If b takes real values, then yi b(xi ) is the margin of example i , and maximizing (7) is a
natural objectiv for many training algorithm. Exercise Can you find examples of

algorithms/predictors which do/don’t maximize the loss in (7)?

More generally (we will use this later), the direction b maximizes

X

i

yi b(x
i )[��0(yi f (x

i ))] (8)

Finding the direction b is equivalent with step 1 of the AdaBoost algorithm, training a weak
classifier on the weighted data. The resulting b can be seen as the best approximate of the
gradient of L� in B.
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The line minimization

Now let us do line minimization: find the optimal step size � in direction b. For this we take
the derivative of L̂�(f + �b) w.r.t � and set it to 0.

dL̂�(f + �b)

d�
=
X

i

yi b(x
i )�0(yi f (x

i )) = �

X

i

yi b(x
i )e�yi f (x

i )��yi b(x
i ) (9)

� is the (unique) root of X

i

wi yi b(x
i )e��yi b(x

i ) = 0 (10)

If • b(x) 2 {�1, 1} then line optimization gives �k from AdaBoost
• b(x) 2 [�1, 1] then line optimization gives �k from AdaBoost approximately
• b(x) 2 (�1,1) then � amounts to a rescaling of b and is redundant.
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Calculating �k
for binary b’s

Assume b(x) 2 {±1}.
In this case y

i
b
(
x
i ) = ±1 and we obtain

dL̂�(f + �b)

d�
=

X

i corr

wi e
��

�

X

i err

wi e
� = 0 (11)

0 = (1�

X

i err

wi )� (
X

i err

wi )

| {z }
"k

e
2� (12)

� =
1

2
ln

1� "k

"k
(13)

This is the �k coe�cient of step 4 of AdaBoost

Hence, the AdaBoost algorithm can be seen as minimizing the loss L�(f ) by steepest descent
in the function space spanB.
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RealAdaBoost

The third case corresponds to the RealAdaBoost in the FHT variant, described here for
completeness
Real AdaBoost Algorithm (in the FHT variant)

Assume B contains real-valued functions
Input M, labeled training set D

Initialize f = 0
w

1
i

= 1
n
weight of datapoint xi

for k = 1, 2, . . .M
“learn classifier for D with weights w

k
) b

k”

compute new weights w
k+1
i

= w
k

i
e
�y

i
b
k (xi ) and normalize them to sum to 1

Output f (x) =
P

M

k=1 b
k (x)
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A statistical view of boosting

It has been shown [?] (FHT) that boosting can also be seen as noisy gradient descent in
function space when we replace the finite training set with the true data distribution. The loss
function and gradient can be given a probabilistic interpretation. This point of view is useful in
two ways:

1. It shows that boosting is asymptotically minimizing a reasonable loss function, so that we
can expect the performace/and algorithm behavior on finite samples to be a good
predictor on its behaviour with much larger samples.

2. It is an interpretation that allows on to create a very large variety of boosting algorithms,
like the LogitBost, Gentle AdaBoost and GradientBoost, presented hereafter.

Assume

I we do boosting “at the distribution level”, i.e using PXY instead of the empirical
distribution given by D.

I The loss function is L�(f ) = E [e�yf (x)].
The notation E [] denotes expectation w.r.t the joint PXY distribution.

I learning a classifier means “find the best possible minimizer to L�(f )”
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Is L� a good loss?

Proposition

Denote px = PXY (y = 1|x). The loss L�(f ) is minimized by

f
⇤(x) =

1

2
ln

PXY (y = 1|x)

PXY (y = �1|x)
=

1

2
ln

px

1� px

And px = e
f (x)

ef (x)+e�f (x) the logistic function.

Exercise Does the expresion of px look familiar? What is the connection?

Proof Since we are minimizing over all possible f ’s with no restrictions, we can minimize
separately for every f (x). Hence, let x be fixed

EPY |X=x
[e�yf (x)] = P(y = 1|x)e�f (x) + P(y = �1|x)ef (x)

and the gradient is

@E [e�yf (x)
|x]

@f (x)
= �P(y = 1|x)e�f (x) + P(y = �1|x)ef (x)

By setting this to 0 the result follows. ⇤

In summary f
⇤ is the Bayes optimal predictor for L�. But by the Proposition, f ⇤ is also Bayes

optimal for L01. (Good!)
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Steepest descent on L�(f ) is (like) RealAdaboost

Proposition

The Real AdaBoost (with “learn a classifier” defined at the distribution level) fits an

additive logistic regression model f by iterative descent on L�(f ).

Proof The proof is similar to that for the training set case.
Suppose we have a current estimate f (x) and seek to improve it by minimizing L�(f + b) over
b. In the proof we assume that b is an arbitrary function, while in practice b will be chosen to
best approximate the ideal f within the class B.
Denote by px = P[y = 1|x] (the true value) and by p̂x the “estimate”

p̂x =
e
f (x)

ef (x) + e�f (x)
(14)

Assume again x is fixed. Then,

L�(f + b) = E [e�yf (x)�yb(x)]

= e
�f (x)

e
�b(x)

px + (1� px )e
f (x)

e
b(x)

Taking the derivative and setting it to 0 we obtain the new step:

b(x) =
1

2
ln

pxe
�f (x)

(1� px )ef (x)
=

1

2


ln

px

1� px

� ln
p̂x

1� p̂x

�
(15)

Note that if one could exactly obtain the b prescribed by (15) the iteration would not be
necessary.
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(Proof, continued)
More interesting than the exact form of b above is the optimization problem that leads to it.
Denote w(x , y) = e

�yf (x). Then, b is the solution of

b = argmin
b2B

EPXY w(X ,Y )[e
�Yb] (16)

where PXYw(X ,Y ) denotes the (unnormalized) twisted distribution obtained by multiplying
the original data distribution with w(x , y). (Of course, one may have to put some restrictions
on PXY and B in order to obtain a proper distribution.) Finally, note that the new f is f + b

and the new weights are w(x , y)e�yb(x) which finishes the proof.
Hence, the Real AdaBoost algorithm can be seen as a form of “noisy gradient” algorithm at
the distribution level. (Note that the minimization in equation (16) is over both direction and
scale of f .)
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Why the e�yf
loss? and other L� losss

I We saw that L� is statistically motivated. Now we will see that it is computationally
motivated as well.

I Recall: The “true” classification loss L01 is nonsmooth (has 0/no derivatives), non-convex.
For training, one uses surrogate losses of the form L�(y , f ) = �(yf ).

I Want the following properties for �
I �(z) is an upper bound of the 0–1 loss
I �(z) is smooth (has continuous derivatives of any order if f has them); (this lets us use

continuous optimization techniques to fit the classifier)
I �(z) is convex (this leads to global optimization, which has been recognized as beneficial in

practice; it also allows to prove bounds, rates of convergence and so on)
I �(z) is monothone (decreasing) (thus, when z > 0, driving the margins to increase even if the

classification is correct).

These properties are satisfied by �(z) = e
�z
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Surrogate losses and boosting algorithms

A cornucopia of loss functions

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

yF

C
os

t

0−1 cost
exp(−yF)
−log(likelihood)
(yF−1)2

(sometimes good to have L(z) decrease for all z < 0,

and sometimes bad – causes overfitting)

. . . and of boosting algorithms

I GentleAdaBoost: approx Newton,
� = e

�z

I Least-SquaresBoost: � = (1� z)2

many operations in closed form
I LogitBoost � = ln(1 + e

�z )
slower (almost linear) decrease for z ⌧ 0

I AnyBoost, GradientBoost work with
any �
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GradientBoost

GradientBoost Algorithm
Given B contains real-valued functions, loss L�, � di↵erentiable
Input M, labeled training set D

Initialize f
0(x) = �0 = argmin�2R L̂�(�)

for k = 0, 1, 2, . . .M � 1
1. compute r

i = �y
i�0(y i

f (xi )) for i = 1 : n
2. fit bk (x) to data { (xi , r i )}
3. find �k = argmin�2R L̂�(f k + �bk ) (univariate optimization)
update f

k+1(x) = f
k (x) + �k

b
k (x)

Ouput f
M(x)

I Can be used for either classification or regression
I Works with any �
I If � convex, step 3 is convex optimization (e�cient)
I Proposed first as AnyBoost, later specialized for B =decision/regression trees, with other

tweaks and new name GradientBoost
I When B =CART

I step 3 optimizes over every leaf separately
I depth of trees J represents maximum number of interactions in f ; should not be too large (B

must be weak)
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Practical aspects

Overfitting in noise When the classes overlap much (many examples in D hard/impossible to
classify correctly) boosting algorithms tend to focus too much on the hard examples, at the
expense of overall classification accuracy. The same happens for outliers. Observe also that the
loss function(s) in the previous figure, which penalize more as the margin becomes more
negative.
Choice of features Often times, the base class B consists of function of the form
b(x) = xj � a, which perform a split on coordinate xj at point xj = a. They have the
advantage that they can be learned and evaluated extremely fast. One can also augment the
coordinate vector x with functions of the coordinates (e.g. x ! [ x1 . . . xd x1x2 x1x3 . . . ])
essentially creating a large set of features, which corresponds to finite but very large B. In such
a situation, the number of features d can easily be larger than M the number of b’s in the final
f . Thus, boosting will be implicitly performing a feature selection task.
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When to stop boosting?

The idea of Cross-Validation (CV) is to use an idependent sample from PXY , denoted D
0 and

called the validation set to estimate the expected loss L01(f ). When overfitting starts, L01(f k )
will start increasing with k. Boosting is the stopped at the value M that minimizes L̂01(bk ;D0)
(denoted Lcv below to simplify notation)
AdaBoost with Cross-Validation

Given Training set D of size n, validation set D of size n
0, base classifier B

Initialize

1. while LCV decreases (but for at least 1 step)
I do a round of boosting on D
I for i 0 = 1 : n0 compute f (xi

0
) f (xi

0
) + �k

b
k (xi

0
)

I compute L
CV

01 = 1
n0

P
i0 1[yi0 f (xi0 )<0]
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How to choose a loss �?

Can we analyze which loss functions � are “better”? Can we o↵er some guarantees in terms of
generalization bounds? The answers are in [?] Bartlett, Jodan & McAuli↵e,”Convextity,
classification and risk bounds”, 2005 (BJM).
We will restrict ourselves to convex, almost everywhere di↵erentiable losss � that are upper
bounds of the 0-1 loss.
Let p = P[Y = 1|X ], z = f (X ). Then the expected loss of classification at X is

Cp(z) = p�(z) + (1� p)�(�z) (17)

and the optimal loss is

H(p) = min bzCp(z) attained for f ⇤ =
1

2
ln

p

1� p
(18)

Let H� denote the smallest loss for a misclassification

H
�(p) = inf

sgnz=�sgn(2p�1)
Cp(z) (19)

Intuitively, we are minimizing � instead of the “true” misclassification loss, and we want to
measure how much we can be o↵ when doing this. The following results say that we can bound
the “true” loss L01(f ) in terms of the �-loss L�.
We say � is classification calibrated if H�(p) > H(p) for all p 6= 1/2. For � convex, we have
that � is classification calibrated i↵ � di↵erentiable at 0 and �0(0) < 0.
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Proposition

(Theorem 4 in BJM) If � is classification calibrated and convex, then for any classifier F

 (L01(f )� L
⇤
01)  L�(f )� L

⇤
� (20)

where L
⇤
�, L

⇤
01 represent respectively the optimal �-loss and optimal classification loss on the

given data distribution and  is

 (✓) = �(0)� H(
1 + ✓

2
) (21)

Loss function �(z) Transform function  (✓)
exponential: e

�z 1�
p
1� ✓2

truncated quadratic: (max(1� z, 0))2 ✓2

hinge: max(1� z, 0) |✓|
In BJM there are also more general theorems that do not assume � is convex.
Furthermore, a convergence rate bound is given, which depends on: the noise in the labels, a
complexity parameter of the function class B, the curvature of �. By optimizing this expression
w.r.t to B and � one can theoretically choose the loss function and/or the base classifier.
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Consistency of AdaBoost

[?] proved that a large family of boosting algorithms is consistent. Below is an informal version
of their main theorem.
Consistency is defined as L01(f tn ) ! L

⇤
01 for n ! 1 and a tn a certain sequence of stopping

times that tends to infinity with n.
The conditions for consistency are as follows:

1. The function � is convex, lower bounded (by 0) and calibrated as in section 2
2. The boosting step satisfies a weak leaning condition

L̂�(f
k )  � inf

b

L̂�(f
k�1 + ↵b) + (1� �)L̂�(f

k�1) (22)

3. The set B is rich enough that the Bayes loss L
⇤
� can be attained by convex combinations

in B. There is a sequence f̄
k of k terms from B whose L� tends to L

⇤
�

4. The empirical loss L̂� converges to L� when n ! 1 uniformly over all f which are tn

combinations
5. The empirical risks of f̄ k converge, i.e max{0, |L̂�(f̄ n)� L�(f̄ n)|} ! 0, a.s. when n ! 1

6. Algorithmic convergence max{0, |L̂�(f tn )� L̂�(f̄ n)|} ! 0, a.s. when n ! 1. In other
words, the boosting algorithm produces an approximate minimizer of the L� risk if run for
tn iterations

7. tn = n
1�" for some " 2 (0, 1) (e.g. increases slowly with n).
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...and a loss bound

The following result applies to any classifier, but it was developed in response to the idea that
“boosting increases the margin” (which we now know is often, but not always true). It proves
essentially that large margins counter overfitting. As with all worst-case bounds, the bounds
are usually not realistic or practically applicable.

Proposition (to find citation)

Let F be a model class of VC-dimension h, with f (x) 2 [�1, 1] for all x and for all f 2 F . Let

� > 0 and ✓ 2 (0, 1). Then, with probability w.p. > 1� � over training sets

L01(f ) 
1

n
|{i | y

i
f (xi )  ✓}|+ Õ

 r
h

n✓2

!
(23)

for any f 2 F .

This theorem upper bounds the the true loss L01(f ) using the number of margin errors for an
arbitrary margin ✓. Note that for ✓ = 0 a margin error is also a classification error, and for
✓ > 0 the number of margin errors is greater or equal to that of classification errors. Hence,
the first term of the bound increases with ✓, while the second term decreases. So, if most
examples can be classified with a large margin (not necessarily 1), then the bound of Theorem
4 can be tighter.


