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Parametric vs non-parametric

Generative and discriminative models for classification
Generative classifiers
Discriminative classifiers
Generative vs discriminative classifiers

Loss functions
Bayes loss

Variance, bias and complexity
Case 1: With f true , Least Squares loss
Bias and Variance for Kernel Regression (Lecture II.1)
Case 2: Bias as as model (mis)fit

Sampling Variance

Reading HTF Ch.: 2.1–5,2.9, 7.1–4 bias-variance tradeoff, Murphy Ch.: 1., 8.61, Bach Ch.:

1Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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The “learning” problem

I Given
I a problem (e.g. recognize digits from m ×m gray-scale images)
I a sample or (training set) of labeled data

D = {(x1, y1), (x2, y2), . . . (xn, yn)}

drawn i.i.d. from an unknown PXY
I model class F = {f } = set of predictors to choose from

I Wanted
I a predictor f ∈ F that performs well on future samples from the same PXY

I “choose a predictor f ∈ F” = training/learning
I “performs well on future samples” (i.e. f generalizes well) – how do we measure this? how can

we “guarantee” it?
I choosing F is the model selection problem – about this later
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A zoo of predictors

I Linear regression
I Logistic regression
I Linear Discriminant (LDA)
I Quadratic Discriminant (QDA)
I CART (Decision Trees)
I K-Nearest Neighbors
I Nadaraya-Watson (Kernel regression)
I Naive Bayes
I Neural networks/Deep learning
I Support Vector Machines
I Monotonic Regression
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Parametric vs. non-parametric models

Example (Parametric and non-parametric predictors)

Parametric

I Linear, logistic regression
I Linear Discriminant Analysis (LDA)
I Neural networks
I Naive Bayes
I CART with L levels

Non-parametric

I Nearest-neighbor classifiers and
regressors

I Nataraya-Watson predictors
I Monotonic regression
I (Support Vector Machines)

Exercise Are Radial Basis Functions classifiers parametric or non-parametric?
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A mathematical definition
I A model class F is parametric if it is finite-dimensional, otherwise it is non-parametric

In other words
I When we estimate a parametric model from data, there is a fixed number of parameters, (you can

think of them as one for each dimension, although this is not always true), that we need to

estimate to obtain an estimate f̂ ∈ F .
I The parameters are meaningful.

E.g. the βj in logistic regression has a precise meaning: the component of the normal to the
decision boundary along coordinate j .

I The dimension of β does not change if the sample size n increases.
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Non-parametric models – Some intuition

I When the model is non-parametric, the model class F is a function space.
I The f̂ that we estimate will depend on some numerical values (and we could call them

parameters), but these values have little meaning taken individually.
I The number of values needed to describe f̂ generally grows with n.

Examples In the Nearest neighbor and kernel predictors, we have to store all the data
points, thus the number of values describing the predictor f grows (linearly) with the
sample size. Exercise Does the number of values describing f always grow linearly with the sample

size? Does it have to always grow to infinity? Does it have to always grow in the same way for a given

F?
I Non-parametric models often have a smoothness parameter.

Examples of smoothness parameters K in K-nearest neighbor, h the kernel bandwidth in
kernel regression.
To make matters worse, a smoothness parameter is not a parameter! More precisely it is
not a parameter of an f ∈ F , because it is not estimated from the data, but a descriptor
of the model class F .

I We will return to smoothness parameters later in this lecture.
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Generative classifiers

One way to define a classifier is to assume that each class is generated by a distribution
gy (X ) = P(X |Y = y). If we know the distributions gy and the class probabilities P(Y = y),
we can derive the posterior probability distribution of Y for a given x . This is

P(Y = y |X ) =
P(Y = y)gy (X )∑
y′ P(Y = y ′)gy′ (X )

=
P(Y = y)gy (X )

P(X )
(1)

The “best guess” for Y (X ) (i.e. the decision rule) is

f (X ) = argmaxyP(Y = y |x) = argmaxyP(Y = y)gy (x) (2)

I (1) amounts to a likelihood ratio test for Y .
I The functions gy (x) are known as generative models for the classes y .

Therefore, the resulting classifier is called a generative classifier.
Examples: LDA, QDA, Naive Bayes.

I In contrast, a classifier defined directly in terms of f (x) (or PY |X ), like the linear,
quadratic, decision tree is called a discriminative classifier.

I In practice, we may not know the functions gy (x), in which case we estimate them from
the sample D.
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Generative classifier and the likelihood ratio

P(Y = y |X ) =
P(Y = y)gy (X )∑
y′ P(Y = y ′)gy′ (X )

=
P(Y = y)gy (X )

P(X )

f (x) = argmaxyP(Y = y |x) = argmaxygy (x)P(Y = y)

Likelihood Ratio test (for y ∈ {±1})

g+(x)P(Y = +)

g−(x)P(Y = −)
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Example (Fisher’s LDA in one dimension)

Assume Y = ±1, gy (x) = N(x ,±µ, σ2I ), i.e each class is generated by a Normal distribution
with the same spherical covariance matrix, but with a different mean. Let
P(Y = 1) = p ∈ (0, 1). Then, the posterior probability of Y is

P(Y = 1|x) ∝ pe−||x−µ||
2/(2σ2) P(Y = −1|x) ∝ (1− p)e−||x+µ||2/(2σ2) (3)

and f (x) = 1 iff lnP(Y = 1|x)/P(Y = −1|x) ≥ 0, i.e iff

ln
p

1− p
−

1

2σ2
[||x2||−2µT x+||µ||2−||x2||−(2µ)T x−||µ||2] =

(
2µ

σ2

)T

x+ln
p

1− p
≥ 0 (4)

Hence, the classifier f (x) turns out to be a linear classifier. The decision boundary is
perpendicular to the segment connecting the centers µ,−µ. This classifier is known as Fisher’s
Linear Discriminant. [Exercises Show that if the generative models are normal with different
variances, then we obtain a quadratic classifier. What happens if the models gy have the same
variance, but it is a full covariance matrix Σ?]
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Discriminative classifiers

I Defined directly in terms of f (x) or (almost) equivalently, in terms of the decision
boundary {f (x) = 0}

I Can be classified by the shape of the decision boundary (if it’s simple)
I linear, polygonal, quadratic, cubic,. . .

The ambiguity of “linear classifier”

Does it mean f (x) = βT x OR {f (x) = 0} is a hyperplane ?
If we talk about classification and the domain of x is Rd , then “linear” refers to decision
boundary. Otherwise it refers to the expression of f (x). Exercise Find examples when the two

definitions are not equivalent

I Can be grouped by model class (obviously)
I Neural network, K-nearest neighbor, decision tree, . . .

Exercise Is logistic regression a generative or discriminative classifier?
I By method of training (together with model class)

I For example, Perceptron algorithm, Logistic Regression, (Linear) Support Vector Machine (see
later), Decision Tree with 1 level are all linear classifiers, but usually produce different decision
boundaries give a D
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A comparison of generative and discriminative classifiers

Advantages of generative classifiers
I Generative classifiers are statistically motivated
I Generative classifiers are asymptotically optimal

Theorem
If Y ∈ {±1}, the model class Gy in which we are estimating gy contains the true distributions
P(X |Y = y) for every y, and gy = P(X |Y ),P(Y = y) are estimated by Maximum Likelihood
then the expected loss2 of the generative classifier fg given by (2) tends to the Bayes loss when
n→∞, i.e limn→∞ L01(fg ) ≤ min

f∈F
L01(f ). Here F is the class of likelihood ratio classifiers

obtainable from gy ’s in Gy .

I The log-likelihood ratio ln P(Y=1|x)
P(Y=−1|x)

is a natural confidence measure for the label at

fg (x). The further away from 0 the likelihood ratio, the higher the confidence that the
chosen y is correct.

I Generative classifiers extend naturally to more than two classes. If a new class appears, or
the class distribution P(Y ) changes, updating the classifier is simple and computationally
efficient.

I Often it is easier to pick a (parametric) model class for gy than an f directly. Generative
models are generally more intuitive, while often representing/visualizing decision
boundaries between more than two classes is tedious.

2Loss, Bayes loss, L01 are defined in the next section.
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Advantages of discriminative classifiers
I Generative models offer no guarantees if the true gy aren’t in the chosen model class,

whereas for many classes of discriminative models there are guarantees.
I Many discriminative models have performance guarantees for any sample size n, while

generative models are only guaranteed for large enough n
I Discriminative classifiers offer many more choices (but one must know how to pick the

right model)
I Generative models do not use data optimally in the non-asymptotic regime (when n�∞

). This has been confirmed practically many times, as discriminative classifiers have been
very successful for limited sample sizes

Exercise LDA vs Logistic regression: Experiment with LDA vs LR when data comes from 2 Normal

distributions, with outliers. What outliers affect which method more? Experiment also on a toy data set like

the one in the lecture notes.
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Loss functions

The loss function represents the cost of error in a prediction problem. We denote it by L, where

L(y , ŷ) = the cost of predicting ŷ when the actual outcome is y

Note that sometimes the loss depends on x directly. Then we would write it as L(y , ŷ , x).

As usually ŷ = f (x) or sgnf (x), we will typically abuse notation and write L(y , f (x)).
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Least Squares (LS) loss

The Least Squares (LS) (or quadratic) loss function is given by

LLS (y , f (x)) =
1

2
(y − f (x))2 (5)

This loss is commonly associated with regression problems.
Example: LLS is the log-likelihood of a regression problem (linear or not) with Gaussian noise.
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Loss functions for classification

For classification, a natural loss function is the misclassification error (also called 0-1 loss)

L01(y , f (x)) = 1[y 6=f (x)] =

{
1 if y 6= f (x)
0 if y = f (x)

(6)

Sometimes different errors have different costs. For instance, classifying a HIV+ patient as
negative (a false negative error) incurs a much higher cost than classifying a normal patient as
HIV+ (false positive error). This is expressed by asymmetric misclassification costs. For
instance, assume that a false positive has cost one and a false negative has cost 100. We can
express this in the matrix

f (x) : + −
true :+ 0 100

− 1 0

In general, when there are p classes, the matrix L = [Lkl ] defines the loss, with Lkl being the
cost of misclassifying as l an example whose true class is k.
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Expected loss and empirical loss

I Objective of prediction = to minimize expected loss on future data, i.e.

minimize L(f ) = EP(X ,Y )[L(Y , f (X )] over f ∈ F (7)

We call L(f ) above expected loss.

Example (Misclassification error L01(f ))

L01(f ) = probability of making an error on future data.

L01(f ) = P[Yf (X ) < 0] = EPXY
[1[Yf (X )<0]] (8)
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Expected loss and empirical loss

I Objective of prediction = to minimize expected loss on future data, i.e.

minimize L(f ) = EP(X ,Y )[L(Y , f (X )] over f ∈ F (7)

We call L(f ) above expected loss.
I L(f ) cannot be minimized or even computed directly, because we don’t know the data

distribution PXY .
Therefore, in training predictors, one uses the empirical data distribution given by the
sample D.

I The empirical loss (or empirical error or training error) is the average loss on D

L̂(f ) =
1

n

n∑
i=1

1[y i f (x i )<0] (8)

I Finally, the value of the optimal expected loss for our model class (this is the loss value
we are aiming for) is denoted by L(F).

L(F) = min
f∈F

EP(X ,Y )[L(Y , f (X ))] (9)

Note that of all the quantities above, we can only know L̂(f ) for a finite number of f ’s in
F .



M
ar

in
a

M
ei

la
:

P
re

d
ic

ti
o

n
C

o
n

ce
p

ts
O

ct
o

b
er

,
2

0
2

3

18

Bayes loss

I How small can the expected loss L(f ) be?
It is clear that

L(F) = min
f∈F

L(f ) ≥ min
f

L(f ) = L∗ (10)

where L∗ is taken over all possible functions f that take values in Y.
I L∗ is the absolute minimum loss for the given PXY and it is called the Bayes loss.
I The Bayes loss is usually not zero
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Bayes loss for (binary) classification

I Fix x and assume PY |X known. Then:

I Label y will have probability PY |X (y |x) at this x .
I No deterministic guess f (x) for y will make the classification error EPY |X=x

[L01(y , f (x))] (unless

PY |X=x is itself deterministic)
I Best guess minimizes the probability of being wrong. This is achieved by chosing the most

probable class
y∗(x) = argmax

y
PY |X (y |x) (11)

I The probability of being wrong if we choose y∗(x) is 1− p∗(x), where p∗(x) = maxy PY |X (y |x).

I The Bayes classifier is y∗(x) as a function of x and its expected loss is the Bayes loss

L∗01 = EPX
[1− p∗(X )] = EPX

[1−max
y

P[Y |X ]] (12)

This shows that the Bayes loss is a property of the problem, via L and PXY , and not of any
model class or learning algorithm.
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Example

In a classification problem where the class label depends deterministically of the input, the
Bayes loss is 0. For example, classifying between written English and written Japanese has
(probably) zero Bayes loss.

Example

Consider the least squares loss and the following data distribution: PY |X ∼ N(g(X ), σ2). In
other words, the Y values are normally distributed around a deterministic function g(X ). In
this case, optimal least squares predictor is the mean of Y given X , which is equal to g(X ).
The Bayes loss is the expected squared error around the mean, which is σ2. Exercise what is the

expression of the Bayes loss if PY |X ∼ N(g(X ), σ(X )2)?

Exercise What is the Bayes loss if (1) P(Y |X ) ∼ N((β∗)TX , σ2I ) and the loss is LLS ; (2)

P(X |Y = ±1) ∼ N(µ±, σ
2I ) and the loss is L01 (for simplicity, assume X ∈ R, µpm = ±1, σ = 1); (3)

give a formula for the Bayes loss if we know P(X |Y = ±1),P(Y ), Y ∈ {±1} and the loss is L01. (4) Give

an example of a situation when the Bayes loss is 0.
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Bias and variance: Preliminaries

Setup/What we have
I a data source PXY
I a class of predictors F
I From PXY we sample i.i.d. Dn of size n. Hence Dn ∼ Pn

XY .
I A training algorithm that estimates/chooses/learns f̂n from Dn.

I minimize L̂f∈F (empirical loss) Example CART, Logistic Regression and all Max Likelihood
methods

I minimize over f ∈ F (regularized loss)

L̂(f ) + λR(f) (15)

with λ > 0 a regularization parameter Example Ridge Regression, SVM
I other training method (e.g. K-NN, LDA)
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Bias and Variance for parameter estimation

I We want to estimate a parameter θ ∈ Θ ⊆ R
I We use Dn to obtain estimator θ̂Dn which is a function of Dn.
I Dn is random, hence so is θ̂Dn .
I Bias= (θ̂Dn ) = EPn [θ̂Dn ]− θ
I Variance= VarPn (θ̂Dn )

Both Bias and Variance are computed under the distribution from which we sampled Dn,
denoted by Pn.

I Example Estimating µ, σ2 for N(µ, σ2), Dn = {x1:n} ⊂ R

µ̂ =
1

n

∑
i

x i (16)

Bias(µ̂) = E [µ̂− µ] = µ− µ = 0 µ̂ is unbiased (17)

Var(µ̂) = σ2/n (18)

σ̂2 =
1

n

∑
i

(x i − µ̂)2 (19)

Bias(σ̂2) = E [σ̂2 − σ2] =
n − 1

n
σ2 − σ2 = −

1

n
σ2 σ̂2 is biased (20)

σ̂2 ∼
σ2

n − 1
χ2
n−1 (21)

Var(σ̂2) = 2σ2 (22)
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Bias and Variance in Supervised Learning/Prediction

Similarities
I We use Dn to estimate f̂n ∈ F
I Dn is random, hence so if f̂n.
I Bias and variance are properties of F , and depend on n

Exercise Consider linear regression f (x) = βT x , with N(0, σ2) noise. What are the bias and variance of

this predictor?
Differences

1. f̂ is a function
2. We are interested in the predictions and not the parameters of f̂ .
3. We don’t always assume f true exists.

I Several proposals to define bias and variance exist.
I What we need to know in this course/usually is qualitative



M
ar

in
a

M
ei

la
:

P
re

d
ic

ti
o

n
C

o
n

ce
p

ts
O

ct
o

b
er

,
2

0
2

3

25

Two definitions for bias in ML

1. Assuming f true exists
I “Classical” framework
I Typical example: Least Squares loss

2. (No assumption of f true) Bias is (in)ability of F to fit the training set Dn (i.e. to make

L̂ = 0)

3. In both cases, Variance is the variance of predictor f (x) averaged over X
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The Bias-Variance decomposition for LLS
I Assume true model PY |X

y = f (x) + ε with ε ∼ iid ,E [ε] = 0, Var(ε) = σ2, y , f (x), ε ∈ R (23)

I f̂n is estimated from Dn
I at x :

MSE(x) = EPn
XY

[(
f̂n(x)− f true(x)

)2
]

(24)

= EPn
XY

[(
f̂n(x)− EPn

XY
[f̂n(x)] + EPn

XY
[f̂n(x)]− f true(x)

)2
]

(25)

= EPn
XY

[(
f̂n(x)− EPn

XY
[f̂n(x)]

)2
]

︸ ︷︷ ︸
Var f̂n(x)

+ EPn
XY︸ ︷︷ ︸

deterministic

[(
EPn

XY
[f̂n(x)]− f true(x)

)2
]

︸ ︷︷ ︸
Bias2(f̂n(x))

(26)

+ EPn
XY

[(
EPn

XY
[f̂n(x)]− f true(x)

)(
f̂n(x)− EPn

XY
[f̂n(x)

)]
︸ ︷︷ ︸

=0

(27)

I Integrating over all x ∈ R w.r.t PX

EPX
[MSE(x)] = EPX

[Var(f̂n(x))] + EPX
[Bias2(f̂n(x))] (28)

I Note that EPY |X [LLS (y , f̂n(x))] = MSE(x) + σ2 Exercise Prove this

I Bias-Variance Decomposition of LLS : LLS = σ2 + Var︸ ︷︷ ︸+Bias2
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Case 2: Bias as model (mis)fit

I If no f true assumed, bias measures the (in)ability of the model class F to fit the data Dn.
I Better fit ⇔ less bias
I We measure the fit by the loss L associated with the task, i.e L̂(f̂Dn ,Dn)
I Bias(F)= EP(X ,Y )n [L̂(f̂Dn ,Dn)] (hence, bias is expected empirical loss).

I Richer or more complex models classes have less bias
Example Bias( Linear ) > Bias( Quadratic )

Example Bias( 1-NN ) < Bias( K-NN ), for K > 1
I

Example Bias( Linear ) ? Bias( K-NN ) – depends on PXY !

I In modern ML we consider sequences of model classes that can be ordered
I by inclusion

F ⊂ F ′ then bias(F) ≥ bias(F ′) (29)

Example Linear ⊂ Quadratic, . . . CART( L leaves ) ⊂ CART( L + 1 leaves) . . . , Neural net (L
layers) ⊂ . . .

I by complexity

complexity(F) ≤ complexity(F ′) then bias(F) ≥ bias(F ′) (30)

Example . . . complexity(Kernel(h)) ↗ for h ↓, complexity(Ridge Regression, Lasso( λ )) ↑ for
λ ↓, complexity(Linear with margin R) ↑ for R ↓

I Larger data are harder to fit (hence more bias on average)3

3Not trivial, to find a reference.
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Case 2: Bias as model (mis)fit

I If no f true assumed, bias measures the (in)ability of the model class F to fit the data Dn.
I Better fit ⇔ less bias
I We measure the fit by the loss L associated with the task, i.e L̂(f̂Dn ,Dn)
I Bias(F)= EP(X ,Y )n [L̂(f̂Dn ,Dn)] (hence, bias is expected empirical loss).

I Richer or more complex models classes have less bias
Example Bias( Linear ) > Bias( Quadratic )

Example Bias( 1-NN ) < Bias( K-NN ), for K > 1
I

Example Bias( Linear ) ? Bias( K-NN ) – depends on PXY !
I In modern ML we consider sequences of model classes that can be ordered

I by inclusion
F ⊂ F ′ then bias(F) ≥ bias(F ′) (29)

Example Linear ⊂ Quadratic, . . . CART( L leaves ) ⊂ CART( L + 1 leaves) . . . , Neural net (L
layers) ⊂ . . .

I by complexity

complexity(F) ≤ complexity(F ′) then bias(F) ≥ bias(F ′) (30)

Example . . . complexity(Kernel(h)) ↗ for h ↓, complexity(Ridge Regression, Lasso( λ )) ↑ for
λ ↓, complexity(Linear with margin R) ↑ for R ↓

I Larger data are harder to fit (hence more bias on average)3

3Not trivial, to find a reference.
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Sampling variance

I Intuition: if we draw two different data sets D,D′ ∼ PXY (from the same distribution) we
will obtain different predictors f , f ′. Variance measures how different the predictions of
f , f ′ can be on average.

I Variance at x = VarPn
XY

(f̂Dn (x)), where the randomness is over the sample Dn

I Variance associated with predictor class F is the expectation over PX of the variance at x ,
i.e EPX

[VarPn
XY

(f̂Dn (x))]

I Variance depends on n, F , and the data distribution PXY Exercise If PY |X is deterministic for

all x , does it mean that the variance is 0?
I Richer model classes are subject to more variance

F ⊂ F ′ thenVar(F) ≤ Var(F ′) for any f ∗
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Variance, bias and model complexity

I Synonyms: rich class = complex model = flexible model = high modeling power = many
degrees of freedom = many parameters

I Evaluating the model complexity4/number of free parameters of a model class F is usually
a difficult problem!

Non-parametric models # parameters depends on PXY , smoothing parameter and n
Parametric models # parameters NOT always equal to the number of parameters of

f !
Example the classifier f (x) = sgn(αx), x, α ∈ R depends on one parameter α but has ∞ degrees of

freedom5!
Example the linear classifier and regressor on Rd has (no more than) n + 1 degrees of freedom
Example the complexity of a two layer neural net with m fixed is not known (but there are approximation

results); the number of weights in f is obviously (m + 1)(d + 1) + 1
Example For K-NN, the variance increases when K decreases
Example For pruned Decision Tree, the variance increases whith the number of levels

I The variance of a predictor increases with the complexity of F .
I But complexity is the opposite of bias, so bias decrease with the complexity of F
I This is known as the Bias-Variance tradeoff

4There are several definitions of model complexity, but this holds for all definitions I know
5See VC-dimension later
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The Bias-Variance tradeoff

Wanted property unwanted consequence what to do
(for an F) of F not satisfying this property
to fit D well Bias increase complexity
to be robust to sampling noise Variance decrease complexity

The bias-variance tradeoff is the observation that the better a predictor class F is able to fit
any given sample, the more sensitive the selected f will be to sampling noise.
In this course we will learn some ways of balancing these desired properties (or these undesired
consequences).
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Examples, examples. . .

Example (K -nearest neighbor classifiers)

The 1-NN can fit any data set perfectly (every data point is it’s own nearest neighbor). But for
K > 1, the K -NN may not be able to reproduce any pattern of ±1 in the labels. Hence its bias
is larger than the bias of the 1-NN classifier. With the variance, the opposite happens: as K
the number of neighbors increases, the decision regions of the K -NN classifier become more
stable to the random sampling effects. Thus, the variance decreases with K .

Example (Linear vs quadratic vs cubic . . . predictors)

The quadratic functions include all linear functions, the cubics include all quadratics, and so
on. Linear classifiers will have more bias (less flexibility) than quadratic classifiers. On the
other hand, the variance of the linear classifier will be lower than that of the quadratic. The
case of regression is even more straightforward: if we fit the data with a higher degree
polynomial, the fit will be more accurate, but the variation of the polynomial f (x) for x values
not in the training set will be higher too.

Example (Kernel regression)



M
ar

in
a

M
ei

la
:

P
re

d
ic

ti
o

n
C

o
n

ce
p

ts
O

ct
o

b
er

,
2

0
2

3

32

Examples, examples. . . (2)

The bias-variance tradeoff can be observed on a continuous range for kernel regression. When
the kernel width h is near 0, f (x) from Lecture 1, equation (25) will fit the data in the training
set exactly [Exercise: prove this], but will have high variance. When h is large, f (x i ) will be
smoothed between x i and the other data points nearby, so it may be some distance from y i .
However, precisely because f (x) is supported by a larger neighborhood, it will have low
variance. [Exercise: find some intuitive explanations for why this is true] Hence, the
smoothness parameter h controls the trade-off between bias and variance.

Example (Regularization)

The same can be observed if one considers equation (15). For λ = 0, one choses f that best

fits the data (minimizes L̂. For λ→∞, f is chosen to minimize the penalty J, disregarding the
data completely. The latter case has 0 variance, but very large bias. Between these extreme
cases, the parameter λ controls the amount in which we balance fitting the data (variance)
with pulling f towards an a-priori “good” (bias).
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Overfitting and Underfitting

I Bias and variance are properties of the model class F (sometimes toghether with the
learning algorithm – more about this later). They are not properties of the parameters of f
(e.g β), and not of a particular f ∈ F .

I Variance decreases to 0 with n, but bias may not. This implies that for larger sample sizes
n, the trade-off between variance and bias changes, and typically the “best” trade-off, aka
the best model, will have larger complexity.

I Overfitting= is the situation of small bias and too much variance (i.e. F is too complex).

In practice, if a learned predictor f has low L̂(f ) but significantly higher L(f ), we say that
the model has overfit the data D. (Of course we cannot know L(f ) directly, and a
significant amount of work in statistics is dedicated to predicting L(f ) for the purpose of
chosing the best model.)

I Underfitting=bias is too high, or the model is too simple (a.k.a has too few degrees of

freedom). [Exercise: what do you expect to see w.r.t. L̂(f ) v.s. L(f ) for an underfitted
model?]

Complexity, even though there are variations in its definition, and although it is not known exactly for most

model classes, is at the core of learning theory, the part of statistical theory that gives provable results about

the expected loss of a predictor.
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