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1 Build your own exponential family in four

easy steps

Sample space

Let Ω be a sample space, e.g {0, 1},N,R with a dominating measure. Denote
by x and element of Ω. The set Ω will be the support for all densities in the
exponential family P that we are about to define.

Sufficient statistics

Define the function(s) t(x), t : Ω −→ Rk, with components t1:k. We call k
the order of the exponential family P . If t1:k are affinely independent on Ω

i.e. cT t(x) = c0 forx ∈ Ω ⇒ c0, c = 0 (1)

then the family P (or its parametrization) is called minimal.

For example, the functions

t(x) = (x x2) on R are affinely independent (2)

t(x) = (x x2) on {0, 1} are NOT affinely independent (3)

t(x) = (x 1− x) on {0, 1} are NOT affinely independent (4)

Natural parameter space Θ

Define

Θ = {θ |Z(θ) =

∫
Ω

eθ
T t(x)dx < ∞} ⊆ Rk. (5)
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Note that even though Ω can be any sample space, the natural parameter
space is a subset of Rk, so that any θ ∈ Θ is a k-dimensional natural param-
eters vector. The set Θ is convex [Exercise: verify this.] If Θ is also open
then P is linear.

Exponential family model in the natural parametrization.

Finally we are ready to define the elements of our model class P .

pθ(x) =
1

Z(θ)
eθ
T t(x) (6)

The sufficient statistics are also called natural coordinates of the expo-
nential family, and Z is the normalization constant.

It is easy to see that Z(θ) is convex (in θ) as sum (or integral) of the convex
functions ex

T θ.

We will find it useful to work with lnZ(θ) which is the partition function
or the cumulant function.

ψ(θ) = lnZ(θ) = ln
∑
x

eθ
T t(x) (7)

This function is always convex in θ as the composition of the convex increas-
ing function log

∑
i e
yi with the linear functions yi = xTi θ.

Using (7) we can express the distribution p(x) as

pθ(x) = eθ
T t(x)−ψ(θ) (8)

Remarks 1. The general form of an exponential family model is log p(x) =
θT t(x)−logZ(θ)

a(γ)
+ log c(x), with γ another parameter called nuisance parameter

and a > 0 a scaling function, and c(x) a given probability measure. Here
we will ignore a and c, as they do not have any influence on the estimation
of the parameter θ, nor on any of the properties of the exponential family
that we study here. Often times, t(x) = x and we will make this substitution
automatically when there is no ambiguity.

2. Exponential families are defined for x ∈ Ω ⊆ Rn, which can be a discrete
or a continuous sample space. Therefore we will alternate between

∑
x and∫

dx, where the sum and the integral are over Ω.
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Exponential sub-families

Define a function θ(η), η ∈ QRk′ → θ(η) ∈ Θ, with k′ ≤ k. This mapping
defines a subfamily of P by PQ = {pη = pθ(η) ∈ P , η ∈ Q}. If the range of
θ(η) is a vector subspace of dimension k′ < k of Θ, then we call PQ a linear
subfamily. Otherwise we call it a curved exponential (sub)-family. The
original P is called the full exponential family w.r.t PQ.

Exponential family models comprise (multivariate) normal distributions, Markov
random fields (with positive distributions), binomial and multinomial models,
etc. They have many convenient properties, some of which are evident from
the definition above. For example, exponential family models are essentially
the only parametric models that have fixed dimensional sufficient statistics1;
they have conjugate priors; from the differential geometry p.o.v, exponen-
tial families repreent flat manifolds, i.e affine function spaces spanned by
the vectors θi. We will show some of these properties in section ??.

2 Examples

Normal univariate distribution with unit variance

pµ(x) =
1√
2π
e−

(x−µ)2
2 = exp{−x

2

2︸︷︷︸
c(x)

+µx− µ2/2 +
1

2
ln(2π)︸ ︷︷ ︸

ψ(µ)

} (9)

The natural parameter is µ ∈ R, the vector of sufficient statistics is one
dimensional, equal to x, and there is a non-trivial c(x) component of the
model, that influences what Z(θ) is, but not the natural parameter µ.

Normal univariate distribution

pµ,σ2(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (10)

= e
−1

2σ2
x2+ µ

σ2
x− 1

2
[µ

2

σ2
+ln(2πσ2)] (11)

This univariate distribution has 2 natural parameters θ1 = −1
2σ2 , θ2 = µ

σ2 and
a vector of sufficient statistics t(x) = [x2 x] ∈ R2. Note that in this case

1Distributions that are piecewise uniform may also have finite sufficient statistics. In
their case, the sufficient statistics are intervals in which the data lie.
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the natural coordinates/sufficient statistics have a different dimension than
the original variable x. The log-partition function ψ expressed in natural
parameters is

ψ(θ) =
−θ2

2

θ1

+ ln(−π/θ1) (12)

which is strictly convex (verify by taking the Hessian) when θ1 < 0. The
domain Θ of the natural parameters is (−∞, 0)× R.

Note that the first example presents a linear subfamily of the second. To
obtain a curved one-parameter subfamily of P = {pµ,σ2}, take the family of
all distribution where µ = σ > 0.

Bernoulli distribution Here Ω = {0, 1} and let p = Pr[X = 1] the proba-
bility of success in the Bernoulli trial.

Pp(x) = px(1− p)1−x = e(ln p)x+ln(1−p)(1−x) (13)

and the natural parameters are θ = [ln p ln(1− p)] with ψ(θ) = 0, Z(θ) = 1.
This is not a minimal model. We will return to this model in the next section.

3 Expectations, moments and covexity

1. Eθ[X] ≡ µ(θ) = ∇ψ(θ)

Proof

∇ψ(θ) =
∇θ

(∑
x e

θT x
)

Z(θ)
(14)

=

∑
x xe

θT x

Z(θ)
(15)

=
∑
x

x
eθ
T x

Z(θ)
(16)

=
∑
x

xp(x) = Eθ[X] (17)
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2. V arθ[X] = ∇2ψ(θ)

Proof

∇2ψ(θ) = ∇T
θ

[∑
x xe

θT x

Z(θ)

]
(18)

=
∑
x

{
xxT

eθ
T x

Z(θ)
+ xeθ

T x

[
−∇

TZ(θ)

Z2(θ)

]}
(19)

=

∑
x

xxTp(x)− xeθT x
[
−
∑

x′ x
′eθ

T x′

Z2(θ)

]T (20)

= Eθ[xx
T ]− Eθ[x](Eθ[x])T = V arθX (21)

3. From Property 2, because the variance is always positive definite, we
obtain an alternative proof that ψ(θ) is convex.

4. ln pθ(x) = θTx− ψ(θ) is concave in θ and linear in x. Hence p is log-

concave in θ, and is a log-linear model in x.

5. From 4 we also expect that, (under mild regularity conditions) the Max-
imum Likelihood estimate (when it exists) to be unique, and computa-
tionally easy to find, as the unique local maximum of the log-likelihood.

Remark: Let us assume that the sufficient statistics x1, . . . xn are affinely
independent random variables. Then, V arX is non-singular, and con-
sequently, ∇2 ln pθ(x) = −∇2ψ(θ) ≺ 0, implying that the log-likelihood
is strictly concave, and has at most one global maximum.

Example: Univariate Normal By taking the gradient of ψ(θ), we
obtain

∇ψ =

[
−1
2θ1

+
θ22
4θ21

−θ2
2θ1

]
=

[
σ2 + µ2

µ

]
=

[
E[X]
E[X2]

]
(22)

Furthermore (Exercise) the Hessian of ψ will give us (on its diagonal)the
variance of X2, respectively the variance of X, which is of course σ2.

Example: Bernoulli In the above, we obtained φ(θ) ≡ 0 for the
Bernoulli. Hence, its gradient cannot give us the expectation of X.
What is wrong? The problem is that the sufficient statistic t(x) =
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[x 1 − x] is not a vector of affinely independent functions of x. (This
happens generally for distributions over discrete sample spaces if we
are not careful.). It is said that the model (13) is not in standard form.

We reparametrize Pp using a single sufficient statistic and a single pa-
rameter θ.

x ln p+ (1− x) ln(1− p) = x[ln p− ln(1− p)] + ln(1− p) (23)

θ = ln
p

1− p
(24)

ψ(θ) = ln(1− p) = ln
1

1 + eθ
(25)

Now, ψ′(θ) = eθ

1+eθ
= p = E[X] (by replacing θ with its value in (24)).

Let us examine ML estimation closer. Assume we have an i.i.d sample
x1, x2, . . . xn. The likelihood of the sample is

pθ(x
1:n) =

n∏
i=1

eθ
T xi−ψ(θ) (26)

= eθ
T
∑n
i=1 x

i−nψ(θ) (27)

= en[θT x̄−ψ(θ)] (28)

and the ML estimation equation is

max
θ
g(θ, x̄) = x̄T θ − ψ(θ) (29)

Comparing the above equation with (??) we find that

θML is Legendre conjugate with x̄ = (
∑n

i=1 x
i)/n and that the max

log-likelihood (= log-likelihood at θML) φ(x̄) is the Legendre conjugate function of ψ(θ) .

Moreover, maximizing the likelihood is equivalent to solving the equa-
tions

x̄ = ∇ψ(θ); (30)

but from Property 1 we know that ∇ψ(θ) = Eθ[X]. Hence, the ML
equations for an exponential family model amount to solving for θ in

Eθ[X] =

∑
i x

i

n
(31)
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In other words, θML is the parameter value for which the model expec-
tation equals the sample mean of the data (=the expectation under the
empirical distribution). (Exercise: Normal distribution).

6. Returning to the general expression of the log-likelihood, for any θ, the
Legendre conjugate parameter µ is given by (??) µ = ∇θψ = Eθ[X]. In
other words, the conjugate pairs θ, µ represent the (parameter, mean
value) pairs. The dual parametrization of the model in terms of µ, φ(µ)
is called the Mean value parametrization.

The domain of φ(µ), i.e the set {Eθ[X]}θ is called the marginal poly-
tope of the exponential family. Exercise: is the normal distribu-
tion’s (µ, σ2) parametrization a mean value parametrization? For the
Bernoulli, since p = E[X] (Exercise: check this via ∇ψ(θ)), the usual
parametrization is the mean value parametrization.

7. The gradient of the log-likelihood w.r.t the parameters has the simple
formula

∇θ
1

N
ln pθ(x

1:N) = x̄−∇θψ(θ) = x̄− Eθ[x] (32)

Thus, when we fit the models by e.g gradient ascent, the direction of
ascent is the difference between the data expectations and the model
expectations.

Example: Generalized Linear Models (GLM)
A GLM is a regression where the “noise” distribution is in the expo-
nential family.

� y ∈ R, y ∼ Pθ with

Pθ(y) = eθy−ψ(θ) (33)

� the parameter θ is a linear function of x ∈ Rd

θ = βTx (34)

� We denote Eθ[y] = µ. The function g(µ) = θ that relates the mean
parameter to the natural parameter is called the link function.
The link function is given by g(µ) = (∇ψ)−1(µ).
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The log-likelihood (w.r.t. β) is

l(β) = lnPθ(y|x) = θy − ψ(θ) where θ = βTx (35)

and the gradient w.r.t. β is therefore

∇βl = ∇θl∇β(βTx) = (y − µ)x (36)

This simple expression for the gradient is the generalization of the
gradient expression you obtained for the two layer neural network in
STAT 535. [Exercise: This means that the sigmoid function is the
inverse link function defined above. Find what is the link function
that corresponds to the neural network.]

8. H(pθ) ≡ H(θ) = ψ(θ)− θTE[X]

Proof −H(θ) =
∑
x

pθ(x) ln pθ(x) (37)

=
∑
x

pθ(x)[θTx− ψ(θ)] (38)

= θT
∑
x

pθ(x)x− ψ(θ) (39)

= θTµ(θ)− ψ(θ) = φ(µ) (40)

It follows also that H(θ) = −ψ∗(µ) ≡ −φ(µ) . The conjugate of ψ is

the negative entropy.

9. KL(θ1, θ2) = dψ(θ2, θ1) = dφ(µ1, µ2)

Proof We need to prove only one of the equalities, because the other
follows from Property ?? of the Bregman divergence.

KL(θ1, θ2) =
∑
x

pθ1(x) ln
pθ1(x)

pθ2(x)
(41)

=
∑
x

pθ1(x)[θT1 x− ψ(θ1)− θT2 x+ ψ(θ2)] (42)

= (θ1 − θ2)T [
∑
x

pθ1(x)x]︸ ︷︷ ︸
µ(θ1)=∇ψ(θ1)

−ψ(θ1) + ψ(θ2) (43)

= ψ(θ2)− ψ(θ1) + (θ1 − θ2)T∇ψ(θ1) (44)

= dψ(θ2, θ1) (45)
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10. Likelihood and KL divergence (see Lecture 8)
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