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Prediction problems by the type of output /

The “learning” paradigm and vocabulary /

v
Some concepts in Classification = ILU(M WQJ WM f

~ deusion MgIonS &=
The Nearest-Neighbor and kernel predictors q

Linear predictors
Least squares regression
Linear Discriminant Analysis (LDA)
QDA (Quadratic Discriminant Analysis)
Logistic Regression
The PERCEPTRON algorithm

Classification and regression tree(s) (CART)
The Naive Bayes classifier

Reading HTF Ch.: 2.3.1 Linear regression, 2.3.2 Nearest neighbor, 4.1-4 Linear classification,
6.1-3. Kernel regression, 6.6.2 kernel classifiers, 6.6.3 Naive Bayes, 9.2 CART, 11.3 Neural
networks, Murphy Ch.: 1.4.2 nearest neighbors, 1.4.4 linear regression, 1.4.5 logistic regression,
3.5 and 10.2.1 Naive Bayes,4.2.1-3 linear and quadratic discriminant, 14.7.3— kernel regression,
locally weighted regression, 16.2.1-4 CART, (16.5 neural nets), Bach Ch.:



Classifiers with real-valued output

Binary classification

» Since y € {£1}, naturally f : X — {£1}

» But sometimes we prefer a classifier f : X — R (from a predictor class F of real-valued
functions)

» In this case, the prediction y is usually

y = sgn(f(x)) 1)

This is sometimes known as the sign trick.
Examples of real-valued classifiers

» Logistic Regression
» Naive Bayes
in both of the above, f(x) = P[Y = 1|X = x] € [0,1]. Hence

5 = sen (00— 2 @
(re0-3)

» Support Vector Machines
» Kernel classifiers
» Neural Networks

Sign trick
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The sign function sgn(y) = y/|y| if y # 0 and 0 iff y = 0 turns a real valued variable Y into a
discrete-valued one.




Why real valued 7

» for statistical models f(x) = P[Y = 1| X = x] Example: Logistic regression

» for non-statistical models, |f(x)| measures confidence in prediction y, with |f(x)| ~ 0
meaning low confidence. Example: SVM

> if f is differentiable!, the gradient Vf is used in learning algorithms Examples: Logistic
Regression, neural networks, some forms of linear regression such as Lasso

The margin (assuming y € {+1})

» The margin of a classifier f at point x € X is defined as

z = yf(x). (3)
. > Note that sgn(z) = yy.
3 > If z>0, y =y and f(x) is correct
% > If z > 0, then f(x) is correct, and classifier has high confidence
£ > If z <0, then f(x) is incorrect, and |z| measures “how wrong" is f on this x
& > Note also that z &~ 0 means that the classification y is not robust, whether correct or not
s
§

Land V£ not 0 almost everywhere



Real valued multi-way classifiers
» We train m classifier fi.,, : X — R. Then (typically)
y = argmax fi.m(x). (4)
c=1m

¥y = y means the classifier is correct
the training can be done

» independently for each f., c = 1 : m (e.g. generative classifiers — in Lecture I1)
P or at the same time (e.g. neural networks, SVM)

vy

» The margin is defined as
z(x) = f, —maxfc(x) (5)
cAy

In other words
» if y =y (correct), then z = firue — fnextbest > O
> if § # y (mistake), then z = fiue — f; < 0 (since fy(x) is the max of f(x))
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Decision regions, decision boundary of a classifier

Let f(x) be a classifier (not necessarily binary)

> $(x) takes a finite set of values

» The decision region associated with class y = the region in X space where f takes value
y,ie. Dy ={x €RY, f(x) =y} = F(y).

» The boundaries separating the decision regions are called decision boundaries.
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Decision regions, decision boundary of a classifier

Let f(x) be a classifier (not necessarily binary)

> $(x) takes a finite set of values
» The decision region associated with class y = the region in X space where f takes value

y,ie. Dy ={x €RY, f(x) =y} = F(y).
» The boundaries separating the decision regions are called decision boundaries.
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Decision regions, decision boundary of a classifier

Let f(x) be a classifier (not necessarily binary)

> $(x) takes a finite set of values

» The decision region associated with class y = the region in X space where f takes value
y,ie. Dy ={x €RY, f(x) =y} = F(y).

» The boundaries separating the decision regions are called decision boundaries.

» For a binary classifier, we have two decision regions, D and D_. By convention f(x) =0
on the decision boundary.

» For binary classifier with real valued f(x) (i.e §y = sgnf(x)) we define
Dy = {x € RY, f(x) >0}, D_ = {x € RY, f(x) < 0} and the decision boundary
{x € RY, f(x) = 0}
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Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

Linear Regression of 0/1 Response

% Lintarly
sepanahl

FIGURE 2.1. A classification example wn two di-
mensions. The classes are coded as a binary variable
( = 0, = 1), and then fit by linear re-
gresston. The line 1s the deciston boundary defined by
xTB = 0.5. The orange shaded region denotes that part

of input space classified as , while the blue region
18 classified as

§
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Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 2

Bayes Optimal Classifier

FIGURE 2.5. The optimal Bayes decision boundary
for the simulation example of Figures 2.1, 2.2 and 2.35.
Since the generating density is known for each class,
this boundary can be calculated exactly (Fxercise 2.2).



Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 2
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15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two
dimensions as in Figure 2.1. The classes are coded as
a binary variable (BLUE = 0, 0RANCE = 1) and then fit
by 15-nearest-neighbor averaging as in (2.8). The pre-
dicted class is hence chosen by majority vote amongst
the 15-nearest neighbors.
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The Nearest-Neighbor predictor

» 1-Nearest Neighbor The label of a point x is assigned as follows:

1. find the example x' that is nearest to x in D (in Euclidean distance)
2. assign x the label y', i.e

R y2
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Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

1-Nearest Neighbor Classifier
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FIGURE 2.3. The same classification example in two
dimenstons as in Figure 2.1. The classes are coded as
a binary variable ( = 0, = 1), and then
predicted by 1-nearest-neighbor classification.



Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two
dimenstons as in Figure 2.1. The classes are coded as
a binary variable ( = 0, = 1) and then fit
by 15-nearest-neighbor averaging as in (2.8). The pre-
dicted class 1s hence chosen by majority vote amongst
the 15-nearest neighbors.
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The Nearest-Neighbor predictor

» 1-Nearest Neighbor The label of a point x is assigned as follows:
1. find the example x' that is nearest to x in D (in Euclidean distance)

2. assign x the label y', i.e. )

yx) =y

» K-Nearest Neighbor (with K = 3,5 or larger)

1. find the K nearest neighbors of x in D: x*/k VMW Naﬁ 5
&

2. » for classification f(x) = the most frequent label among the K neighbors
(well suited for multiclass) {M

» for regression f(x) = % E/’neighbor ofxy( = mean of neighbors’ labels
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The Nearest-Neighbor predictor

» 1-Nearest Neighbor The label of a point x is assigned as follows:
1. find the example x' that is nearest to x in D (in Euclidean distance)
2. assign x the label y', i.e.

) =y

» K-Nearest Neighbor (with K = 3,5 or larger)

1. find the K nearest neighbors of x in D: PUSIR
2. » for classification f(x) = the most frequent label among the K neighbors
(well suited for multiclass)

P for regression f(x) = % Eineighbor ofxy" = mean of neighbors’ labels

( parameker) Swnooth paramstc
r h{] < Wweltl selaction pow e

» No parameters to estimate!
»> No training!

» But all data must be stored (also called memory-based learning)
-
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