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Parametric vs non-parametric é_

Generative and discriminative models for classification e—
Generative classifiers
Discriminative classifiers
Generative vs discriminative classifiers

Loss functions
Bayes loss

Variance, bias and complexity

Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.6, Bach Ch.:
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INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading



The “learning” problem
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v

Given
a problem (e.g. recognize digits from m X m gray-scale images)
a sample or (training set) of labeled data

D= {(X17y1)7 (X27y2)7 s (Xn’yn)}

drawn i.i.d. from an unknown Pxy
model class F = {f} = set of predictors to choose from

Wanted LOSS
a predictor f € F that performs well on future samples from the same Pxy

vy

v

vy

> ‘“choose a predictor f € F" = training/learning &— »frodV\WlQ- 6196—

P ‘“performs well on future samples” (i.e. f generalizes well) — how do we measure this? how can
we “guarantee” it?

» choosing F is the model selection problem — about this later
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A zoo of predictors

VYVVYVVYVYYVYYY

Linear regression

Logistic regression

Linear Discriminant (LDA)
Quadratic Discriminant (QDA)
CART (Decision Trees)
K-Nearest Neighbors
Nadaraya-Watson (Kernel regression)
Naive Bayes

Neural networks/Deep learning
Support Vector Machines
Monotonic Regression

Clapmes of predicters
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Parametric vs. non-parametric models
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Example (Parametric and non-parametric predictors)

Parametric Non-parametric
> Linear, logistic regression v » Nearest-neighbor classifiers and v
» Linear Discriminant Analysis (LDA) regressors ornel
»> Neural networks (smm) v > Nataraya-Watson predictors v
> Naive Bayes & » Monotonic regression
» ‘CART with L levels » (Support Vector Machines)
or lnves ,Low\jx nn's
Exercise Are Radial Basis Functions classifiers parametric or non-parametric?
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A mathematical definition
> A model class F is parametric if it is finite-dimensional, otherwise it is non-parametric

In other words &) 3:= (/QO!'O(‘ S?d(‘l &6 _fls

» When we estimate a parametric model from data, there is a fixed number of parameters, (you can
think of them as one for each dimension, although this is not always true), that we need to
estimate to obtain an estimate f € F.

» The parameters are meaningful.

E.g. the j3; in logistic regression has a precise meaning: the component of the normal to the
decision boundary along coordinate j.
» The dimension of 3 does not change if the sample size n increases.
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Non-parametric models — Some intuition

>
»

>

When the model is non-parametric, the model class F is a function space.

The f that we estimate will depend on some numerical values (and we could call them
parameters), but these values have little meaning taken individually.

The number of values needed to describe f generally grows with n.

Examples In the Nearest neighbor and kernel predictors, we have to store all the data
points, thus the number of values describing the predictor f grows (linearly) with the
sample size. Exercise Does the number of values describing f always grow linearly with the sample
size? Does it have to always grow to infinity? Does it have to always grow in the same way for a given
F7?

Non-parametric models often have a smoothness parameter.

Examples of smoothness parameters K in K-nearest neighbor, h the kernel bandwidth in
kernel regression.

To make matters worse, a smoothness parameter is not a parameter! More precisely it is
not a parameter of an f € F, because it is not estimated from the data, but a descriptor
of the model class F.

We will return to smoothness parameters later in this lecture.
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Generative classifiers

One way to define a classifier is to assume that each class is generated by a distribution
gy(X) = P(X|Y =y). If we know the distributions g, and the class probabilities P(Y = y),
we can derive the posterior probability distribution of Y for a given x. This is

_ __ PY=ylgy(X) _ P(Y =y)g(X)
PO = S pv =g~ P(X) @
The “best guess” for Y(X) (i.e. the decision rule) is
f(X)= argmaxyP(Y =y|x) = argmaxyP(Y =y)gy(x) (2)

> (1) amounts to a likelihood ratio test for Y.

» The functions gy, (x) are known as generative models for the classes y.
Therefore, the resulting classifier is called a generative classifier.
Examples: LDA, QDA, Naive Bayes.

> In contrast, a classifier defined directly in terms of f(x) (or Py|x), like the linear,
quadratic, decision tree is called a discriminative classifier.

» In practice, we may not know the functions gy, (x), in which case we estimate them from
the sample D.
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Generative classifier and the likelihood ratio

P(Y = y)gy(X) P(Y = y)gy(X)

P(Y =yIX) = =
>y P(Y = y")gy (X) P(X)
f(x) = argmax, P(Y = y|x) = argmax, gy (x)P(Y = y)
Likelihood Ratio test (for y € {£1})

g (x)P(Y =+)
g-(x)P(Y =-)
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Example (Fisher's LDA in one dimension)

Assume Y = £1, g,(x) = N(x, £u,o?l), i.e each class is generated by a Normal distribution
with the same spherical covariance matrix, but with a different mean. Let
P(Y =1) = p € (0,1). Then, the posterior probability of Y is

P(Y = 1|x) « pe~Ix=nlI?/@o%)  p(y = _1|x) « (1 — p)e~!Ix+null?/@o?) (3)

and f(x) = 1iff InP(Y = 1|x)/P(Y = —1|x) > 0, i.e iff

>0 (4)

;

P 1 2p P

In —— Il =2u x4l P =12 —(2w) T x=[lpl’] = (=) x+In
1—p 20 o 1

Hence, the classifier f(x) turns out to be a linear classifier. The decision boundary is
perpendicular to the segment connecting the centers p, —pu. This classifier is known as Fisher’'s
Linear Discriminant. [Exercises Show that if the generative models are normal with different

variances, then we obtain a quadratic classifier. What happens if the models g, have the same
variance, but it is a full covariance matrix X?]



