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Parametric vs non-parametric

Generative and discriminative models for classification

Generative classifiers
Discriminative classifiers
Generative vs discriminative classifiers

Loss functions
Bayes loss

Variance, bias and complexity

Reading HTF Ch.: 2.1–5,2.9, 7.1–4 bias-variance tradeo↵, Murphy Ch.: 1., 8.61, Bach Ch.:

1Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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The “learning” problem

I Given

I a problem (e.g. recognize digits from m ⇥m gray-scale images)
I a sample or (training set) of labeled data

D = {(x1, y1), (x2, y2), . . . (xn, yn)}

drawn i.i.d. from an unknown PXY

I model class F = {f } = set of predictors to choose from

I Wanted
I a predictor f 2 F that performs well on future samples from the same PXY

I “choose a predictor f 2 F” = training/learning
I “performs well on future samples” (i.e. f generalizes well) – how do we measure this? how can

we “guarantee” it?
I choosing F is the model selection problem – about this later
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A zoo of predictors

I Linear regression
I Logistic regression
I Linear Discriminant (LDA)
I Quadratic Discriminant (QDA)
I CART (Decision Trees)
I K-Nearest Neighbors
I Nadaraya-Watson (Kernel regression)
I Naive Bayes
I Neural networks/Deep learning
I Support Vector Machines
I Monotonic Regression
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Parametric vs. non-parametric models

Example (Parametric and non-parametric predictors)

Parametric

I Linear, logistic regression
I Linear Discriminant Analysis (LDA)
I Neural networks
I Naive Bayes
I CART with L levels

Non-parametric

I Nearest-neighbor classifiers and
regressors

I Nataraya-Watson predictors
I Monotonic regression
I (Support Vector Machines)

Exercise Are Radial Basis Functions classifiers parametric or non-parametric?
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A mathematical definition
I A model class F is parametric if it is finite-dimensional, otherwise it is non-parametric

In other words
I When we estimate a parametric model from data, there is a fixed number of parameters, (you can

think of them as one for each dimension, although this is not always true), that we need to
estimate to obtain an estimate f̂ 2 F .

I The parameters are meaningful.
E.g. the �j in logistic regression has a precise meaning: the component of the normal to the
decision boundary along coordinate j .

I The dimension of � does not change if the sample size n increases.
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Non-parametric models – Some intuition

I When the model is non-parametric, the model class F is a function space.
I The f̂ that we estimate will depend on some numerical values (and we could call them

parameters), but these values have little meaning taken individually.
I The number of values needed to describe f̂ generally grows with n.

Examples In the Nearest neighbor and kernel predictors, we have to store all the data
points, thus the number of values describing the predictor f grows (linearly) with the
sample size. Exercise Does the number of values describing f always grow linearly with the sample

size? Does it have to always grow to infinity? Does it have to always grow in the same way for a given

F?
I Non-parametric models often have a smoothness parameter.

Examples of smoothness parameters K in K-nearest neighbor, h the kernel bandwidth in
kernel regression.
To make matters worse, a smoothness parameter is not a parameter! More precisely it is
not a parameter of an f 2 F , because it is not estimated from the data, but a descriptor
of the model class F .

I We will return to smoothness parameters later in this lecture.
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Generative classifiers

One way to define a classifier is to assume that each class is generated by a distribution
gy (X ) = P(X |Y = y). If we know the distributions gy and the class probabilities P(Y = y),
we can derive the posterior probability distribution of Y for a given x . This is

P(Y = y |X ) =
P(Y = y)gy (X )

P
y0 P(Y = y 0)gy0 (X )

=
P(Y = y)gy (X )

P(X )
(1)

The “best guess” for Y (X ) (i.e. the decision rule) is

f (X ) = argmaxyP(Y = y |x) = argmaxyP(Y = y)gy (x) (2)

I (1) amounts to a likelihood ratio test for Y .
I The functions gy (x) are known as generative models for the classes y .

Therefore, the resulting classifier is called a generative classifier.
Examples: LDA, QDA, Naive Bayes.

I In contrast, a classifier defined directly in terms of f (x) (or PY |X ), like the linear,
quadratic, decision tree is called a discriminative classifier.

I In practice, we may not know the functions gy (x), in which case we estimate them from
the sample D.
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Generative classifier and the likelihood ratio

P(Y = y |X ) =
P(Y = y)gy (X )

P
y0 P(Y = y 0)gy0 (X )

=
P(Y = y)gy (X )

P(X )

f (x) = argmaxyP(Y = y |x) = argmaxy gy (x)P(Y = y)

Likelihood Ratio test (for y 2 {±1})

g+(x)P(Y = +)

g�(x)P(Y = �)
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Example (Fisher’s LDA in one dimension)

Assume Y = ±1, gy (x) = N(x ,±µ,�2
I ), i.e each class is generated by a Normal distribution

with the same spherical covariance matrix, but with a di↵erent mean. Let
P(Y = 1) = p 2 (0, 1). Then, the posterior probability of Y is

P(Y = 1|x) / pe
�||x�µ||2/(2�2)

P(Y = �1|x) / (1� p)e�||x+µ||2/(2�2) (3)

and f (x) = 1 i↵ lnP(Y = 1|x)/P(Y = �1|x) � 0, i.e i↵

ln
p

1� p
�

1

2�2
[||x2||�2µT

x+||µ||2�||x2||�(2µ)T x�||µ||2] =

✓
2µ

�2

◆
T

x+ln
p

1� p
� 0 (4)

Hence, the classifier f (x) turns out to be a linear classifier. The decision boundary is
perpendicular to the segment connecting the centers µ,�µ. This classifier is known as Fisher’s

Linear Discriminant. [Exercises Show that if the generative models are normal with di↵erent
variances, then we obtain a quadratic classifier. What happens if the models gy have the same
variance, but it is a full covariance matrix ⌃?]


