


M
a
r
in
a
M
e
il
a
:
P
r
e
d
ic
t
io
n
C
o
n
c
e
p
t
s

O
c
t
o
b
e
r
,
2
0
2
3

1

Lecture II: Prediction – Basic concepts

Marina Meilă
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Parametric vs non-parametric

Generative and discriminative models for classification

Generative classifiers
Discriminative classifiers
Generative vs discriminative classifiers

Loss functions
Bayes loss

Variance, bias and complexity

Reading HTF Ch.: 2.1–5,2.9, 7.1–4 bias-variance tradeo↵, Murphy Ch.: 1., 8.61, Bach Ch.:

1Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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The “learning” problem

I Given

I a problem (e.g. recognize digits from m ⇥m gray-scale images)
I a sample or (training set) of labeled data

D = {(x1, y1), (x2, y2), . . . (xn, yn)}

drawn i.i.d. from an unknown PXY

I model class F = {f } = set of predictors to choose from

I Wanted
I a predictor f 2 F that performs well on future samples from the same PXY

I “choose a predictor f 2 F” = training/learning
I “performs well on future samples” (i.e. f generalizes well) – how do we measure this? how can

we “guarantee” it?
I choosing F is the model selection problem – about this later
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A zoo of predictors

I Linear regression
I Logistic regression
I Linear Discriminant (LDA)
I Quadratic Discriminant (QDA)
I CART (Decision Trees)
I K-Nearest Neighbors
I Nadaraya-Watson (Kernel regression)
I Naive Bayes
I Neural networks/Deep learning
I Support Vector Machines
I Monotonic Regression
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Generative classifiers

One way to define a classifier is to assume that each class is generated by a distribution
gy (X ) = P(X |Y = y). If we know the distributions gy and the class probabilities P(Y = y),
we can derive the posterior probability distribution of Y for a given x . This is

P(Y = y |X ) =
P(Y = y)gy (X )

P
y0 P(Y = y 0)gy0 (X )

=
P(Y = y)gy (X )

P(X )
(1)

The “best guess” for Y (X ) (i.e. the decision rule) is

f (X ) = argmaxyP(Y = y |x) = argmaxyP(Y = y)gy (x) (2)

I (1) amounts to a likelihood ratio test for Y .
I The functions gy (x) are known as generative models for the classes y .

Therefore, the resulting classifier is called a generative classifier.
Examples: LDA, QDA, Naive Bayes.

I In contrast, a classifier defined directly in terms of f (x) (or PY |X ), like the linear,
quadratic, decision tree is called a discriminative classifier.

I In practice, we may not know the functions gy (x), in which case we estimate them from
the sample D.
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Generative classifier and the likelihood ratio

P(Y = y |X ) =
P(Y = y)gy (X )

P
y0 P(Y = y 0)gy0 (X )

=
P(Y = y)gy (X )

P(X )

f (x) = argmaxyP(Y = y |x) = argmaxy gy (x)P(Y = y)

Likelihood Ratio test (for y 2 {±1})

g+(x)P(Y = +)

g�(x)P(Y = �)
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Example (Fisher’s LDA in one dimension)

Assume Y = ±1, gy (x) = N(x ,±µ,�2
I ), i.e each class is generated by a Normal distribution

with the same spherical covariance matrix, but with a di↵erent mean. Let
P(Y = 1) = p 2 (0, 1). Then, the posterior probability of Y is

P(Y = 1|x) / pe
�||x�µ||2/(2�2)

P(Y = �1|x) / (1� p)e�||x+µ||2/(2�2) (3)

and f (x) = 1 i↵ lnP(Y = 1|x)/P(Y = �1|x) � 0, i.e i↵

ln
p

1� p
�

1

2�2
[||x2||�2µT

x+||µ||2�||x2||�(2µ)T x�||µ||2] =

✓
2µ

�2

◆
T

x+ln
p

1� p
� 0 (4)

Hence, the classifier f (x) turns out to be a linear classifier. The decision boundary is
perpendicular to the segment connecting the centers µ,�µ. This classifier is known as Fisher’s

Linear Discriminant. [Exercises Show that if the generative models are normal with di↵erent
variances, then we obtain a quadratic classifier. What happens if the models gy have the same
variance, but it is a full covariance matrix ⌃?]
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Discriminative classifiers

I Defined directly in terms of f (x) or (almost) equivalently, in terms of the decision
boundary {f (x) = 0}

I Can be classified by the shape of the decision boundary (if it’s simple)
I linear, polygonal, quadratic, cubic,. . .

The ambiguity of “linear classifier”

Does it mean f (x) = �T
x OR {f (x) = 0} is a hyperplane ?

If we talk about classification and the domain of x is Rd , then “linear” refers to decision
boundary. Otherwise it refers to the expression of f (x). Exercise Find examples when the two

definitions are not equivalent

I Can be grouped by model class (obviously)
I Neural network, K-nearest neighbor, decision tree, . . .

Exercise Is logistic regression a generative or discriminative classifier?
I By method of training (together with model class)

I For example, Perceptron algorithm, Logistic Regression, (Linear) Support Vector Machine (see
later), Decision Tree with 1 level are all linear classifiers, but usually produce di↵erent decision
boundaries give a D



M
a
r
in
a
M
e
il
a
:
P
r
e
d
ic
t
io
n
C
o
n
c
e
p
t
s

O
c
t
o
b
e
r
,
2
0
2
3

12

A comparison of generative and discriminative classifiers

Advantages of generative classifiers
I Generative classifiers are statistically motivated
I Generative classifiers are asymptotically optimal

Theorem

If Y 2 {±1}, the model class Gy in which we are estimating gy contains the true distributions

P(X |Y = y) for every y , and gy = P(X |Y ),P(Y = y) are estimated by Maximum Likelihood

then the expected loss
2
of the generative classifier fg given by (2) tends to the Bayes loss when

n ! 1, i.e limn!1 L01(fg )  min
f2F

L01(f ). Here F is the class of likelihood ratio classifiers

obtainable from gy ’s in Gy .

I The log-likelihood ratio ln P(Y=1|x)
P(Y=�1|x) is a natural confidence measure for the label at

fg (x). The further away from 0 the likelihood ratio, the higher the confidence that the
chosen y is correct.

I Generative classifiers extend naturally to more than two classes. If a new class appears, or
the class distribution P(Y ) changes, updating the classifier is simple and computationally
e�cient.

I Often it is easier to pick a (parametric) model class for gy than an f directly. Generative
models are generally more intuitive, while often representing/visualizing decision
boundaries between more than two classes is tedious.

2Loss, Bayes loss, L01 are defined in the next section.
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Advantages of discriminative classifiers
I Generative models o↵er no guarantees if the true gy aren’t in the chosen model class,

whereas for many classes of discriminative models there are guarantees.
I Many discriminative models have performance guarantees for any sample size n, while

generative models are only guaranteed for large enough n

I Discriminative classifiers o↵er many more choices (but one must know how to pick the
right model)

I Generative models do not use data optimally in the non-asymptotic regime (when n ⌧ 1
). This has been confirmed practically many times, as discriminative classifiers have been
very successful for limited sample sizes

Exercise LDA vs Logistic regression: Experiment with LDA vs LR when data comes from 2 Normal

distributions, with outliers. What outliers a↵ect which method more? Experiment also on a toy data set like

the one in the lecture notes.
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Loss functions

The loss function represents the cost of error in a prediction problem. We denote it by L, where

L(y , ŷ) = the cost of predicting ŷ when the actual outcome is y

Note that sometimes the loss depends on x directly. Then we would write it as L(y , ŷ , x).

As usually ŷ = f (x) or sgnf (x), we will typically abuse notation and write L(y , f (x)).
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Least Squares (LS) loss

The Least Squares (LS) (or quadratic) loss function is given by

LLS (y , f (x)) =
1

2
(y � f (x))2 (5)

This loss is commonly associated with regression problems.
Example: LLS is the log-likelihood of a regression problem (linear or not) with Gaussian noise.
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Loss functions for classification

For classification, a natural loss function is the misclassification error (also called 0-1 loss)

L01(y , f (x)) = 1[y 6=f (x)] =

⇢
1 if y 6= f (x)
0 if y = f (x)

(6)

Sometimes di↵erent errors have di↵erent costs. For instance, classifying a HIV+ patient as
negative (a false negative error) incurs a much higher cost than classifying a normal patient as
HIV+ (false positive error). This is expressed by asymmetric misclassification costs. For
instance, assume that a false positive has cost one and a false negative has cost 100. We can
express this in the matrix

f (x) : + �
true :+ 0 100

� 1 0

In general, when there are p classes, the matrix L = [Lkl ] defines the loss, with Lkl being the
cost of misclassifying as l an example whose true class is k.
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Expected loss and empirical loss

I Objective of prediction = to minimize expected loss on future data, i.e.

minimize L(f ) = EP(X ,Y )[L(Y , f (X )] over f 2 F (7)

We call L(f ) above expected loss.

Example (Misclassification error L01(f ))

L01(f ) = probability of making an error on future data.

L01(f ) = P[Yf (X ) < 0] = EPXY
[1[Yf (X )<0]] (8)
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Expected loss and empirical loss

I Objective of prediction = to minimize expected loss on future data, i.e.

minimize L(f ) = EP(X ,Y )[L(Y , f (X )] over f 2 F (7)

We call L(f ) above expected loss.
I L(f ) cannot be minimized or even computed directly, because we don’t know the data

distribution PXY .
Therefore, in training predictors, one uses the empirical data distribution given by the
sample D.

I The empirical loss (or empirical error or training error) is the average loss on D

L̂(f ) =
1

n

nX

i=1

1[y i f (xi )<0] (8)

I Finally, the value of the optimal expected loss for our model class (this is the loss value
we are aiming for) is denoted by L(F).

L(F) = min
f2F

EP(X ,Y )[L(Y , f (X ))] (9)

Note that of all the quantities above, we can only know L̂(f ) for a finite number of f ’s in
F .
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Bayes loss

I How small can the expected loss L(f ) be?
It is clear that

L(F) = min
f2F

L(f ) � min
f

L(f ) = L
⇤ (10)

where L
⇤ is taken over all possible functions f that take values in Y.

I L
⇤ is the absolute minimum loss for the given PXY and it is called the Bayes loss.

I The Bayes loss is usually not zero
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Bayes loss for (binary) classification

I Fix x and assume PY |X known. Then:
I Label y will have probability PY |X (y |x) at this x .
I No deterministic guess f (x) for y will make the classification error EP

Y |X=x
[L01(y , f (x))] (unless

PY |X=x is itself deterministic)
I Best guess minimizes the probability of being wrong. This is achieved by chosing the most

probable class
y
⇤(x) = argmax

y

PY |X (y |x) (11)

I The probability of being wrong if we choose y
⇤(x) is 1 � p

⇤(x), where p
⇤(x) = maxy PY |X (y |x).

I The Bayes classifier is y
⇤(x) as a function of x and its expected loss is the Bayes loss

L
⇤
01 = EPX

[1� p
⇤(X )] = EPX

[1�max
y

P[Y |X ]] (12)

This shows that the Bayes loss is a property of the problem, via L and PXY , and not of any
model class or learning algorithm.
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Example

In a classification problem where the class label depends deterministically of the input, the
Bayes loss is 0. For example, classifying between written English and written Japanese has
(probably) zero Bayes loss.

Example

Consider the least squares loss and the following data distribution: PY |X ⇠ N(g(X ),�2). In
other words, the Y values are normally distributed around a deterministic function g(X ). In
this case, optimal least squares predictor is the mean of Y given X , which is equal to g(X ).
The Bayes loss is the expected squared error around the mean, which is �2. Exercise what is the

expression of the Bayes loss if PY |X ⇠ N(g(X ),�(X )2)?

Exercise What is the Bayes loss if (1) P(Y |X ) ⇠ N((�⇤)TX ,�2
I ) and the loss is LLS ; (2)

P(X |Y = ±1) ⇠ N(µ±,�2
I ) and the loss is L01 (for simplicity, assume X 2 R, µpm = ±1, � = 1); (3)

give a formula for the Bayes loss if we know P(X |Y = ±1),P(Y ), Y 2 {±1} and the loss is L01. (4) Give

an example of a situation when the Bayes loss is 0.




