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The Neural Tangent Kernel (NTK)

Wide networks and Gaussian Processes

The NTK is constant during training
Example — regression and Ly,g

Wide and deep networks and classification
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Notation

» Neural network predictor f(x;0), where x € R4
» For each layer | = 1: L of dimension m;, with x0 = x, and z! = f(x)

ZI+1 _ Wl+lxl+b/+1 X/+1 — ¢(Z/+1) (1)

Here x//*1 z/+1 pl*+1 are column vectors W/l is a my 1 x m; matrix, ¢() is the
non-linearity/activation function.
» The weights

W,-JI- = awwé-/\/m,, bJ/- = UbB}, Known as NTK parametrization (2)

> Parameter vector = vector{w!t gL} € RP initialized i.i.d. ~ N(0,1)
» o, are fixed hyper-parameters, 1/,/m; normalizes the expected norm of W! columns
» Loss L(y, f)

» We want to analize the behavior of this network () at initialization and during training,
when my.; very large
» Three approximations help analysis
(A1) continuous time training, called gradient flow
(A2) my.. — oo in the wide limit, we can apply the Central Limit Theorem (CLT), and Gaussian
Processes
(A3) parameters 6 do not change much during training, i.e. 6; — 0g is small
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The Gradient Flow

> Assume training by gradient descent on £ = S Ly F(x)
> The gradient of £

A oL, . . .

Vol = 32 GF 0OV (0) = VofpVikp € R
where V¢ Lp = [22(y/, f(x';0))]i=1.n € R", Vfp = [Vof(x',0)]i=1.n € RPX"
> Assume (A1) gradient descent with infinitezimal time steps. In other words, the

parameters evolve by an ordinary differential equation

é = —nVp bVelp € RP
P
. of 96; .
fo= ——L = (Vef)T0 R
D a0, 0c ~ (VoP) <
j=1
fp = —n (Ve fD)TVQ fpVelp € RP
————
G

> G = Vof) Vofp = k(X,X) is a Gram matrix!
» Therefore, we define the Neural Tangent Kernel (NTK) by

k(x,x") = Vgf(x;0)TVaf(x;0)

3)

4)
©)

(6)

(@)



Gradient flow and NTK — summary

é = —nVefpVeLlp € RP
fo = —nGV¢L ERP
K(x,x") = Vof(x)TVyf(x')

» fx, Vyfx, G depend only on the inputs X, 6
» V(L depends only on the correct outputs Y, and predicted outputs, i.e. on Y and 6

» This holds for any predictor! So what is special about neural networks?

> First, we will analyze  for very wide neural networks with random parameters (e.g. at
initialization)

» Then, we will analyze what happens during training under assumption (A3)
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Wide NN's Gaussian Process (GP)

» This is about fy, a NN initialized with Gaussian independent parameters. For simplicity, we
denote it as f.

> Assume %L1 fixed, only WL, bt random as in (2)
> Recall f(x) = WExt=1(x) + bt for any x with xt—1 € R™L

» f(x) = sum of m;_; i.i.d. random variables, hence f(x) ~ Normal by CLT, for m;_; large
» Randomness is over weights WL, bL111
»> We have E[f(x)] =0 and

Ugv L—INT( \L—=1, 2 __ L
— = (x") (X)) T o = R (x

mp_1
(8)

Cov(f(x), f(x")) = E[(WExE by (W) 14 pt)] =

where xt=1 (x)t=1 € R™M.~1 are the outputs of the (L — 1)-th layer for inputs x, x’
kL is a positive definite kernel Exercise Prove this.
f(x) is a random function of x

» The distribution of f(x) defined as above, is called a Gaussian Pocess

> More generally, it can be shown [Jacot, Gabriel, Hongler, NeurlPS 2018] that, when all 6
parameters are sampled as in (??), fo(x) ~ GP(0,x!)

Q1 What is the kernel kb of this GP
Q2 This is all nice, but 6 changes during training. What can we say about 0;, f; after training?
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Q1: ldea.

>

vvyvyy

>

From (8), for layer /| =1 : L we have

0_2
K (xx") = ElZ(x)z/(x)] = T:(X'_l)T(X')'_1+U§ 9

with x'~1 = #(z/~1). Note also that zj’ are i.i.d. so it does not matter which j we choose.

2
In particular, k!(x,x’) = %"IVXTX, + o2 is deterministic
...and ' is random for / > 1.
However, when m; — oo, ﬁ(x"l)-r(x’)’_1 — E[¥]
More specifically, this expectation can be written as

E[+] = //d)(z)(b(z’)Normal({ Zz, ];o, Kl ) dzdz. (10)

In the above z, z’ represent the z/=1(x), z/~1(x’) variables, sampled from the level /

Normal distribution, which has covariance given by /=1, namely

-1 I—1 /
-1 _ K (sz) K (X)X)

Rt = |: kX, %) kTN, X)) (11)
Hence, the limit of &/(x,x’) when my.; — oo, is a deterministic kernel for all /.

[Jacot, Gabriel, Hongler, NeurlPS 2018] derived this recursion (next page).



Q1: A recursive expression for the Neural Tangent Kernel

[Jacot, Gabriel, Hongler, NeurlPS 2018]
» | fixed, m — oo
» Simplified expression for mg,;, = m, oy =0op =1
» Then the NTK x = sl is defined recursively by layer

Kox) = Tax), Tox) = %XTX'H (12)
TG X)) = K (X)) X)) + 2 (x, x), (13)
with T (x,x") = ng,), (14)

S (x,x') = ngjw,), (15)

and Le = E[¢(X)8(X)]with(X, X') ~ N(0, g&’ ))((,)) Zz(())((;?iﬂ))(]]e)

> In other words, at level / + 1, X = x/, X’ = (x’)! are sampled from a GP with kernel ¥/,
and T (x, x"), £!*1(x, x") represent their (scalar) covariance after passing through the
non-linearities ¢, ¢’ (where ¢’ is the derivative of ¢)
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Summary so far

» Now, we understand the random intialization of wide networks, with L layers.

fo ~ GP(0, kh)

L

: 2
where k" is a kernel that depends only on ¢ (and O’bﬂw)

What next?
» Analysis of training by linearization
» Then, the NTK limit for L — oo and its relevance for classification and regression

(17)



The Linearized Network fir

Notation: 6o ¢, fo, = parameters, predictor at times 0, t

» Here we use (A3), the assumption that the parameters 6 change little during training.
Extensive evidence supports this assumption.

» First order Taylor expansion of f; around fj

fi(x) = folx)+ Vofo(x)" (6: — o) (18)
non-linear in x, linear in 6
Voflh = Ve (19)
k(X" = Vfh(x)TVef(x") constant during training (20)
Go = KX, X (21)
0 = —nVeh(X) VLY, £ (x)) (22)
- T .
Fin(x) = —n r(x,X)Go VL(Y, f"(x)) (23)
———

depends on 0




NTK during training — empirical evidence

= = =50
0.40 n=500,t=0 04 n

n =500, t = 200 n=1000

n=10000, t=0 — n=ePs o
0.35 7 n =10000, t = 200 === n=c,{P1, Poo}

0.2

004,

fa(sin(y), cos(y))

Figure 1: Convergence of the NTK to a fixed limit Figure 2: Networks function fy near convergence
for two widths n and two times ¢. for two widths n and 10th, 50th and 90th per-
centiles of the asymptotic Gaussian distribution.



Linearized Network dynamics for Lyg

» For example, for Lrs(y, f) = %(f —¥)?, V¢Lrs(f,y) = f —y. In this case, equations

(22),(23) are a linear system and have an analytic solution.

b= = —Voh(X)7 Gy (1-e %) (f(X)-Y) (24)
) = (1—e %) Y 4 e %t y(X) (25)
fin) = k(x,X) 7G5t (/ - e*"Gof) Y+ fo(x) — k(x, X) T Gy ! (/ - e*"Gof) 2 (626)
1(x) v(x)
Notes:
» if Gy > 0 then e~ "% — 0 for t — co
> in discrete time t = 0,1, 3, ... replace °* with (1 — a)".

Sketch of proof: In(1 — a)* = tIn(1 — a) &~ t(—a) for a small; therefore e °" ~ (1 — a)".
> IR () = fo(x) + K(x, X) T Gyt (/ - e—”Gof) (Y — (X))
Exercise Prove (24),(25),(26) from (22),(23)



Wide and deep neural networks for classification — Basic quantities and
assumptions

[Radhakrishnan, Belkin, Ulher, 2022]

» This paper studies the limits of wide neural networks m; — oo for all / =1 : L when the
depth L — oo

> It is already known that for regression L — oo is NOT OPTIMAL

» Since the NTK depends only of the activation function ¢, the limit shall only depend on ¢
as well.

» In particular, the limit depends on ¢ only through the following

A = E[¢(2)] when z ~ N(0,1)
A = E[¢/(2)] when z ~ N(0,1)

> Classifier f(x) = lim; 00 sgnYG1kE(X, x) with G = [kL(x, %)]; j=1:n-

» Additional assumptions

» Data X C Si, vectors of norm 1 with all entries > 0.
» Simplifying assumptions on NTK parameters (e.g. o, = op = 1)
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Case A # 0: Networks implement majority vote

Theorem (Proposition 1 in [Radhakrishnan, Belkin, Ulher, 2022])

If there is a function 0 < ¢(L) < oo so that

L / L
Limw % = ¢ >0 forany x # x', and LI_l)n;o KC(()Z)X) # c1, (27)
then
n
lim f(x) =sgn» y'  MAJORITY CLASSIFIER (28)
L—oo ey

» What ¢'s satisfy theorem? RelLU, all ¢ with B # 1.
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Case A= A" = 0: Networks implement 1-nearest neighbor

Theorem (Theorem 3 in [Radhakrishnan, Belkin, Ulher, 2022])

T,1 Tyl

Given x, assume w.l.o.g. that x' x* = maxj—1., X
L i
. RE(x,x")
| = 0. 29
Ll>mo<> rL(x, x1) (29)
and
lim f(x) = sgny? 1-nn (30)
L— o0



Case A =0, A’ # 0: Networks implement singular kernel classifier

Theorem (Theorem 1 in [Radhakrishnan, Belkin, Ulher, 2022])

whoGx)  R(lIx = x|))
lim = ; (31)
15 (APE(L+ 1) llx — x|
with o = —4:252: and R() > 0, bounded, and R(u) > & around 0.
> if a >0, R‘,‘(HX ’H‘U) is singular kernel

> Computatlonally not a problem if data x1'" distinct, Gy is well defined
> If x = x', set f(x) =



Optimality of singular kernel classifier

Theorem (Theorem 2 in [Radhakrishnan, Belkin, Ulher, 2022])
IfFA=0, A’ #0 and o = —d then lim|_, o, f(x) is Bayes-optimal.

» What activations ¢ satisfy this theorem?

3
d)opt( ) _ 23—/42 + /1_21 d/2

1
6 2d/4z

for d > 2. (32)

d=2 A=-1.5e-13 A'=0.71 B=2 a=2 d=3 A=-5.6e-06 A'=0.59 B=2 a= 3
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Optimal singular kernels for d = 4, 8, 16, 32

d=4 A=-7.3e-06 A'=0.5 B=2 a=4 d=8 A=-9.6e-06 A'=0.25 B=2 o=8

40 30
30 25
20
20
15
101,
A 10
0
5
-10 o
-20 -5
5 -4 -3 -2 -1 0 1 2 3 4 5 5 4 -3 -2 -1 0 1 2 3 4 5
50 d=16 A=-6.1e-06 A'=0.062 B=2 a=16 , d¥32 A=-1.2e-17 A'=0.0039 B=2 o=32
60 1.5
40} 1
0.5
20}
o],
0 0.5
20 -1
-40 1.5
-2

-30 -20 -10 0 10 -500  -400 -300 -200 -100 0




Summary

@ Infinitely Wide and Deep Classifiers zr N(O’ D)
A=E[$(2)]
A =E[¢'(2)]
A#0 A=0
/\A’# 0

Singular Kernel Classifiers

Majority Vote Classifiers 1-Nearest Neighbor Classifiers
(Not Optimal) (Not Optimal) (Include Optimal Classifiers)
Examples:
ReLU 21 Hermite Polynomial Cubic Polynomial
21 2+ (V6 3)z
z) = max(0, z, ) o) = LW S
9(2) = max(0,2) =2 o) = ZHOE

(b) Regression cl
- o
&, =,
b 5
— TestEx. o TestEx.
Train. Ex. Train. Ex.
© ! r
Optimal singular Kernel
Majority Vote Kemel
1-Nearest Neighbor Kernel
" = Training Examples.
| ® : Test Examples.
8 Vote
< ne

0

z — Z|

b when A #0, lim;_, nL(x,x’) =0 for x # x’, and f(x) = 0 is vanishingly small (useless
for regression), but sgnf(x) can be optimal for classification
c Singular kernel o > d,a0 < d, majority vote kernel, and 1-nn kernel



Limits of some activation functions

¢°P' Bayes classifier
ReLU majority vote

. . i 1 .
sigmoid e 2 1-nearest neighbor
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