
M
ar

in
a

M
ei

la
:

L
ec

tu
re

V
I

–
W

id
e

n
et

w
o

rk
s

a
n

d
N

T
K

1

Lecture VI – Wide multilayer networks and the Neural Tangent Kernel
(NTK)

Marina Meilă
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The Neural Tangent Kernel (NTK)

Wide networks and Gaussian Processes

The NTK is constant during training
Example – regression and LLS

Wide and deep networks and classification
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Notation

I Neural network predictor f (x ; θ), where x ∈ Rd

I For each layer l = 1 : L of dimension ml , with x0 ≡ x , and zL ≡ f (x)

z l+1 = W l+1x l + bl+1 x l+1 = φ(z l+1) (1)

Here x l,l+1, z l+1, bl+1 are column vectors W l+1 is a ml+1 ×ml matrix, φ() is the
non-linearity/activation function.

I The weights

W l
ij = σww

l
ij/
√
ml , blj = σbβ

l
j , Known as NTK parametrization (2)

I Parameter vector θ = vector{w1:L, β1:L} ∈ Rp initialized i.i.d. ∼ N(0, 1)
I σw,b are fixed hyper-parameters, 1/

√
ml normalizes the expected norm of W l columns

I Loss L(y , f )

I We want to analize the behavior of this network f () at initialization and during training,
when m1:L very large

I Three approximations help analysis
(A1) continuous time training, called gradient flow
(A2) m1:L →∞ in the wide limit, we can apply the Central Limit Theorem (CLT), and Gaussian

Processes
(A3) parameters θ do not change much during training, i.e. θt − θ0 is small
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The Gradient Flow

I Assume training by gradient descent on L̂ =
∑

i L(y i , f (x i )
I The gradient of L̂

∇θL̂ =
∑
i

∂L
∂f

(y i , f (x i ; θ))∇θf (x i , θ) = ∇θfD∇f LD ∈ Rp (3)

where ∇f LD = [ ∂L
∂f

(y i , f (x i ; θ))]i=1:n ∈ Rn, ∇θfD = [∇θf (x i , θ)]i=1:n ∈ Rp×n

I Assume (A1) gradient descent with infinitezimal time steps. In other words, the
parameters evolve by an ordinary differential equation

θ̇ = −η∇θfD∇f LD ∈ Rp (4)

ḟ =

p∑
j=1

∂f

∂θj

∂θj

∂t
= (∇θf )T θ̇ ∈ R (5)

ḟD = −η (∇θfD)T∇θfD︸ ︷︷ ︸
G

∇f LD ∈ Rp (6)

I G ≡ ∇θf TD∇θfD ≡ κ(X,X) is a Gram matrix!
I Therefore, we define the Neural Tangent Kernel (NTK) by

κ(x , x ′) = ∇θf (x ; θ)T∇θf (x ′; θ) (7)
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Gradient flow and NTK – summary

θ̇ = −η∇θfD∇f LD ∈ Rp

ḟD = −ηG∇f L ∈ Rp

κ(x , x ′) = ∇θf (x)T∇θf (x ′)

I fX, ∇θfX, G depend only on the inputs X, θ
I ∇f L depends only on the correct outputs Y, and predicted outputs, i.e. on Y and θ

I This holds for any predictor! So what is special about neural networks?

I First, we will analyze κ for very wide neural networks with random parameters (e.g. at
initialization)

I Then, we will analyze what happens during training under assumption (A3)
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Wide NN’s Gaussian Process (GP)

I This is about f0, a NN initialized with Gaussian independent parameters. For simplicity, we
denote it as f .

I Assume θ1:L−1 fixed, only W L, bL random as in (2)
I Recall f (x) = W LxL−1(x) + bL for any x with xL−1 ∈ RmL

I f (x) = sum of mL−1 i.i.d. random variables, hence f (x) ∼ Normal by CLT, for mL−1 large
I Randomness is over weights W L, bL!!!
I We have E [f (x)] = 0 and

Cov(f (x), f (x ′)) = E [(W LxL−1+bL)(W L(x ′)L−1+bL)] =
σ2
w

mL−1
(xL−1)T (x ′)L−1+σ2

b ≡ κ
L(x , x ′)

(8)
where xL−1, (x ′)L−1 ∈ RmL−1 are the outputs of the (L− 1)-th layer for inputs x , x ′

I κL is a positive definite kernel Exercise Prove this.
I f (x) is a random function of x
I The distribution of f (x) defined as above, is called a Gaussian Pocess

I More generally, it can be shown [Jacot, Gabriel, Hongler, NeurIPS 2018] that, when all θ
parameters are sampled as in (??), f0(x) ∼ GP(0, κL)

Q1 What is the kernel κL of this GP
Q2 This is all nice, but θ changes during training. What can we say about θt , ft after training?
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Q1: Idea.

I From (8), for layer l = 1 : L we have

κl (x , x ′) = E [z lj (x)z lj (x
′)] =

σ2
w

ml−1
(x l−1)T (x ′)l−1 + σ2

b (9)

with x l−1 = φ(z l−1). Note also that z lj are i.i.d. so it does not matter which j we choose.

I In particular, κ1(x , x ′) =
σ2
w

m1
xT x ′ + σ2

b is deterministic

I . . . and κl is random for l > 1.
I However, when ml →∞, 1

ml−1
(x l−1)T (x ′)l−1 → E [∗]

I More specifically, this expectation can be written as

E [∗] =

∫ ∫
φ(z)φ(z ′)Normal(

[
z
z ′

]
; 0, κl−1

x,x′ ) dz dz
′. (10)

In the above z, z ′ represent the z l−1(x), z l−1(x ′) variables, sampled from the level l
Normal distribution, which has covariance given by κl−1, namely

κl−1
x,x′ =

[
κl−1(x , x) κl−1(x , x ′)
κl−1(x ′, x) κl−1(x ′, x ′)

]
. (11)

I Hence, the limit of κl (x , x ′) when m1:l →∞, is a deterministic kernel for all l .
[Jacot, Gabriel, Hongler, NeurIPS 2018] derived this recursion (next page).
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Q1: A recursive expression for the Neural Tangent Kernel

[Jacot, Gabriel, Hongler, NeurIPS 2018]

I L fixed, m→∞
I Simplified expression for m0:L = m, σw = σb = 1
I Then the NTK κ ≡ κL is defined recursively by layer

κ1(x , x ′) = Σ1(x , x ′), Σ1(x , x ′) =
1

m
xT x ′ + 1 (12)

κl+1(x , x ′) = κl (x , x ′)Σ̇l+1(x , x ′) + Σl+1(x , x ′), (13)

with Σl+1(x , x ′) = Lφ
Σl (x,x′)

, (14)

Σ̇l+1(x , x ′) = Lφ
′

Σl (x,x′)
, (15)

and LφΣ = E [φ(X )φ(X ′)] with(X ,X ′) ∼ N(0,

[
Σ(X ,X ) Σ(X ,X ′)
Σ(X ,X ′) Σ(X ′,X ′)

]
(16)

I In other words, at level l + 1, X ≡ x l ,X ′ ≡ (x ′)l are sampled from a GP with kernel Σl ,
and Σl+1(x , x ′), Σ̇l+1(x , x ′) represent their (scalar) covariance after passing through the
non-linearities φ, φ′ (where φ′ is the derivative of φ)
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Summary so far

I Now, we understand the random intialization of wide networks, with L layers.

f0 ∼ GP(0, κL) (17)

where κL is a kernel that depends only on φ (and σ2
b,w )

What next?
I Analysis of training by linearization
I Then, the NTK limit for L→∞ and its relevance for classification and regression
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The Linearized Network f lin

Notation: θ0,t , f0,t = parameters, predictor at times 0, t

I Here we use (A3), the assumption that the parameters θ change little during training.
Extensive evidence supports this assumption.

I First order Taylor expansion of ft around f0

f lint (x) = f0(x) +∇θf0(x)T (θt − θ0) (18)

non-linear in x , linear in θ

∇θf lint = ∇θf0 (19)

κ(x , x ′) = ∇θf0(x)T∇θf0(x ′) constant during training (20)

G0 ≡ κX,X (21)

θ̇t = −η∇θf0(X)T∇f L(Y, f lint (x)) (22)

ḟ lint (x) = −η
T

κ(x ,X)G0︸ ︷︷ ︸
depends on θ0

∇f L(Y, f lint (x)) (23)
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NTK during training – empirical evidence
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Linearized Network dynamics for LLS

I For example, for LLS(y , f ) = 1
2

(f − y)2, ∇f LLS(f , y) = f − y . In this case, equations
(22),(23) are a linear system and have an analytic solution.

θt − θ0 = −∇θf0(X)TG−1
0

(
I − e−ηG0t

)
(f0(X)− Y) (24)

f lint (X) =
(
I − e−ηG0t

)
Y + e−ηG0t f0(X) (25)

f lint (x) = κ(x ,X)TG−1
0

(
I − e−ηG0t

)
Y︸ ︷︷ ︸

µ(x)

+ f0(x)− κ(x ,X)TG−1
0

(
I − e−ηG0t

)
f0(x)︸ ︷︷ ︸

γ(x)

(26)

Notes:
I if G0 � 0 then e−ηG0t → 0 for t →∞
I in discrete time t = 0, 1, 3, . . . replace eat with (1− a)t .

Sketch of proof: ln(1− a)t = t ln(1− a) ≈ t(−a) for a small; therefore e−at ≈ (1− a)t .

I f lint (x) = f0(x) + κ(x,X)TG−1
0

(
I − e−ηG0t

)
(Y − f0(X))

Exercise Prove (24),(25),(26) from (22),(23)
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Wide and deep neural networks for classification – Basic quantities and
assumptions

[Radhakrishnan, Belkin, Ulher, 2022]

I This paper studies the limits of wide neural networks ml →∞ for all l = 1 : L when the
depth L→∞

I It is already known that for regression L→∞ is NOT OPTIMAL
I Since the NTK depends only of the activation function φ, the limit shall only depend on φ

as well.
I In particular, the limit depends on φ only through the following

A = E [φ(Z)] when z ∼ N(0, 1)
A′ = E [φ′(Z)] when z ∼ N(0, 1)

B = E [(φ′(Z))2] when z ∼ N(0, 1)

I Classifier f (x) = limL→∞ sgnYG−1κL(X, x) with G = [κL(x i , x j )]i,j=1:n.

I Additional assumptions
I Data X ⊆ Sd

+, vectors of norm 1 with all entries ≥ 0.
I Simplifying assumptions on NTK parameters (e.g. σw = σb = 1)



M
ar

in
a

M
ei

la
:

L
ec

tu
re

V
I

–
W

id
e

n
et

w
o

rk
s

a
n

d
N

T
K

14

Case A 6= 0: Networks implement majority vote

Theorem (Proposition 1 in [Radhakrishnan, Belkin, Ulher, 2022])

If there is a function 0 < c(L) <∞ so that

lim
L→∞

κL(x , x ′)

c(L)
= c1 > 0 for any x 6= x ′, and lim

L→∞

κL(x , x)

c(L)
6= c1, (27)

then

lim
L→∞

f (x) = sgn
n∑

i=1

y i MAJORITY CLASSIFIER (28)

I What φ’s satisfy theorem? ReLU, all φ with B 6= 1.
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Case A = A′ = 0: Networks implement 1-nearest neighbor

Theorem (Theorem 3 in [Radhakrishnan, Belkin, Ulher, 2022])

Given x, assume w.l.o.g. that xT x1 = maxi=1:n x
T x i .

lim
L→∞

κL(x , x i )

κL(x , x1)
= 0. (29)

and
lim

L→∞
f (x) = sgny1 1-nn (30)
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Case A = 0, A′ 6= 0: Networks implement singular kernel classifier

Theorem (Theorem 1 in [Radhakrishnan, Belkin, Ulher, 2022])

lim
L→∞

κL(x , x ′)

(A′)2L(L + 1)
=

R(‖x − x ′‖)
‖x − x ′‖α

, (31)

with α = −4 log A′

log B′ and R() ≥ 0, bounded, and R(u) > δ around 0.

I if α > 0, R(‖x−x′‖)
‖x−x′‖α is singular kernel

I Computationally not a problem: if data x1:n distinct, G0 is well defined
I If x = x i , set f (x) = y i .
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Optimality of singular kernel classifier

Theorem (Theorem 2 in [Radhakrishnan, Belkin, Ulher, 2022])

If A = 0, A′ 6= 0 and α = −d then limL→∞ f (x) is Bayes-optimal.

I What activations φ satisfy this theorem?

φopt(z) =
1

2d/4

z3 − 3z
√

6
+
√

1− 21−d/2
z2 − 1
√

2
+

1

2d/4
z for d ≥ 2. (32)
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Optimal singular kernels for d = 4, 8, 16, 32
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Summary

b when A 6= 0, limL→∞ κL(x , x ′) = 0 for x 6= x ′, and f (x) = 0 is vanishingly small (useless
for regression), but sgnf (x) can be optimal for classification

c Singular kernel α > d ,α < d , majority vote kernel, and 1-nn kernel
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Limits of some activation functions

φopt Bayes classifier
ReLU majority vote

sigmoid 1
1+e−z − 1

2
1-nearest neighbor
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