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Parametric vs non-parametric /

Generative and discriminative models for classification /
Generative classifiers
Discriminative classifiers
Generative vs discriminative classifiers

Loss functions /

Bayes loss
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Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.6, Bach Ch.:
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INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading



The “learning” problem

\4

Given
a problem (e.g. recognize digits from m X m gray-scale images)
a sample or (training set) of labeled data

D= {(X17y1)7 (X27y2)7 s (Xn’yn)}

drawn i.i.d. from an unknown Pxy

October, 2023
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» model class F = {f} = set of predictors to choose from
» Wanted
» a predictor f € F that performs well on future samples from the same Pxy

P ‘“choose a predictor f € F" = training/learning

P “performs well on future samples” (i.e. f generalizes well) — how do we measure this? how can
we “guarantee” it?

» choosing F is the model selection problem — about this later
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A zoo of predictors
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Linear regression

Logistic regression

Linear Discriminant (LDA)
Quadratic Discriminant (QDA)
CART (Decision Trees)
K-Nearest Neighbors
Nadaraya-Watson (Kernel regression)
Naive Bayes

Neural networks/Deep learning
Support Vector Machines
Monotonic Regression
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Bias and variance: Preliminaries

Setup/What we have P - P P
> a data source Pxy W x ‘ ‘x
> a class of predictors F
» From Pxy we sampm.i.d. D, of size n. Hence D, ~ P%,, . L ,Q,(LGhV\/
> A training algorithm that estimates/chooses/learns_flfrom Dh.

P> minimize l:fe]? (empirical loss) Example CART, Logistic Regression and all Max Likelihood
methods
» minimize over f € F (regularized loss)

E(f) + 2J(F) (15)

with A > 0 a regularization parameter Example Ridge Regression, SVM
P other training method (e.g. K-NN, LDA)



Bias and Variance for parameter estimation
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We want to estimate a parameter ¢ € ©CR

We use D, to obtain estimator 6p, which is a function of D,.

D, is random, hence so is épn.

Bias= (6p,) = Epn[0p,] — 6

Variance= Varpn(9p,)

Both Bias and Variance are computed under the distribution from which we sampled D,
denoted by P".

vyvyvyyvyy

» Example Estimating 1, o2 for N(u, 0%), Dp = {x1:.n} C R

1 .
po= =S°x (16)
e
Bias(f) = E[p—p] = p—p = 0 [ is unbiased (17)
Var(i) = o*in. ~ (8)
N 1 P A
g & = = (-ny y 1 (19)
5 -1 1
Bias(3?) = E[62—02] = 1”262 02 = —“5% &%isbiased  (20)
& n n
3 - o2,
2 g ~ Xn—1 (21)
E n—1
=

Var(6?) = 202 (22)




Bias and Variance in Supervised Learning/Prediction

Similarities . MV\M '9'

» We use D, to estimate fc,, e F
» D, is random, hence so if 1?,,
» Bias and variance are properties of F, and depend on n
Exercise Consider linear regression f(x) = 87 x, with N(0, o®) noise. What are the bias and variance of

this predictor?
Differences

October, 2023

1. fis a function R
/2. We are interested in the predictions and not the parameters of 7.
V3 We don’t always assume ¢ exists.

» Several proposals to define bias and variance exist.
» What we need to know in this course/usually is qualitative
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Two definitions for bias in ML
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1. Assuming f™€ exists

P “Classical” framework
P Typical example: Least Squares loss

2. (No assumption of f“¢) Bias is (in)ability of F to fit the training set D, (i.e. to make
L=o0)

3. In both cases, Variance is the variance of predictor f(x) averaged over X
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The Bias-Variance decomposition for L; g
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> Assume true model Py |x

+rue
y = f(x)+e with e~iid,E[e] =0, Var(e)=0> y,f(x),c€R (23)

> f,, is estimated from D,
> at x:

MSE(x) = Epp, [(fn(x) — ftrue(X))2:| (24)
= Erg, | (B0 — B, 1+ g, L] - £ (x)| (5)

= g, | (2~ Eng, 1200) | + By | (B, 01 = (0} 38)

A deterministic v
Varfy(x) Bias?(f(x))
+(Epg [ (Epg, (0] = F7(x) ) (Fa(x) — Epg, 1fa(x) )] (27)
-

=0

»> Note that MSE(x) = EPY\X [Lis(y, f,,(x))] Exercise Prove this
> Integrating over all x € R w.r.t Px

Epy [MSE(x)] = Epy[Ep, x[Lis(y: fn()]] = Epy[Var(fa(x))] + Epy [Bias®(fa(x))] (28)
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> Bias-Variance Decomposition of L;s: | L;s = Var + Bias?




Lecture Notes Il.1 — Bias and variance in Kernel Regression
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An elementary analysis &— Lﬁ.A %rpv‘oof—

Bias, Variance and h for x € R /
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Bias, Variance and h for x € R

2

The bias of y at x is defined as Ep; Epn [y(x) = f(x)]. P$?2‘¥- = PXY
Ery Er2 900 - ()] = 1 (- (:X)’(’j)(x) + 200 4 aun (®)
e .
The variance ¥ at x is defined as Varpp pn(9(x)). el widie,
2
Varpy P2(9(x)) = %02 +o (%) . 9)

The MSE (Mean Squared Error) is defined as Epy Epn [(f/(x) — f(x))2], which equals

MSE(x) = bias? + variance® = h4of, (f/(::;())’):)(x) + f//2(X)> + Z—ioz +... (10)
2[5 % | b2
d
s R j b(z)2 Ao =0

»r4

2After []
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Optimal selection of h
If the MSE is integrated over R we obtain the MISE= [, MSE(x)px(x)dx.

The kernel width h can be chosen to minimize the MISE, for fixed f, px and b.
We set to 0 the partial derivative

OMISE (m
T n <.) — e =0 (11)

1
Sy (12)

It follows that h° o %, or

In d dimensions, the optimal h depends on the sample size n as

1

h o ) (13)
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Case 2: Bias as model (mis)fit

If no f"“¢ assumed, bias measures the (in)ability of the model class F to fit the data D,.
Better fit < less bias

We measure the fit by the loss L associated with the task, i.e [(fpn,Dn)

Bias(F)= Ep(ny)n[[(fDn,D,,)] (hence, bias is expected empirical loss).

vyvyyvyy

» Richer or more complex models classes have less bias
Example Bias( Linear ) > Bias( Quadratic )
Example Bias( 1-NN ) < Bias( K-NN ), for K > 1

Example Bias( Linear ) ? Bias( K-NN ) — depends on Pxy!
» In modern ML we consider sequences of model classes that can be ordered
» by inclusion

F C F' then bias(F) > bias(F’) (29)
Example Linear C Quadratic, ... CART( L leaves ) C CART( L + 1 leaves) ..., Neural net (L
layers) C ...
» by complexity
complexity(F) < complexity(F') then bias(F) > bias(F") (30)

Example ...complexity(Kernel(h)) * for h |, complexity(Ridge Regression, Lasso( A )) 71 for
A |, complexity(Linear with margin R) 1 for R |

> Larger data are harder to fit (hence more bias on average)3

3Not trivial, to find a reference.



Case 2: Bias as model (mis)fit
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If no f"“¢ assumed, bias measures the (in)ability of the model class F to fit the data D,.
Better fit < less bias

We measure the fit by the loss L associated with the task, i.e [(fpn,Dn)

Bias(F)= Ep(ny)n[[(fDn,D,,)] (hence, bias is expected empirical loss).
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» Richer or more complex models classes have less bias
Example Bias( Linear ) > Bias( Quadratic )
Example Bias( 1-NN ) < Bias( K-NN ), for K > 1

Example Bias( Linear ) ? Bias( K-NN ) — depends on Pxy!
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3Not trivial, to find a reference.



Sampling variance
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» Intuition: if we draw two different data sets D, D’ ~ Pxy (from the same distribution) we
will obtain different predictors f, f’. Variance measures how different the predictions of
f,f’ can be on average.

» Variance at x = Varp)"(y(fpn(X)), where the randomness is over the sample D,

> Variance associated with predictor class F is the expectation over Px of the variance at x,
i.e EPX[VarP)’;V(fD,,(X))]

» Variance depends on n, F, and the data distribution Pxy Exercise If Py|x is deterministic for
all x, does it mean that the variance is 0?7
» Richer model classes are subject to more variance

F C F' thenVar(F) < Var(F') for anyf*
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Variance, bias and model complexity

»> Synonyms: rich class = complex model = flexible model = high modeling power = many
degrees of freedom = many parameters

> Evaluating the model complexity* /number of free parameters of a model class F is usually
a difficult problem!

f!

Example

Example
Example

Example
Example

> The

Non-parametric models # parameters depends on Pxy, smoothing parameter and n
Parametric models # parameters NOT always equal to the number of parameters of

the classifier f(x) = sgn(ax), x, « € R depends on one parameter « but has co degrees of
freedom®!

the linear classifier and regressor on R? has (no more than) n + 1 degrees of freedom

the complexity of a two layer neural net with m fixed is not known (but there are approximation
results); the number of weights in f is obviously (m + 1)(n+ 1) + 1

For K-NN, the variance increases when K decreases

For pruned Decision Tree, the variance increases whith the number of levels

variance of a predictor increases with the complexity of F.

» But complexity is the opposite of bias, so bias decrease with the complexity of F
» This is known as the Bias-Variance tradeoff

“There are several definitions of model complexity, but this holds for all definitions | know

5See VC-dimension later
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The Bias-Variance tradeoff

Wanted property unwanted consequence what to do

(for an F) of F not satisfying this property

to fit D well Bias increase complexity
to be robust to sampling noise  Variance decrease complexity

The bias-variance tradeoff is the observation that the better a predictor class F is able to fit
any given sample, the more sensitive the selected f will be to sampling noise.

In this course we will learn some ways of balancing these desired properties (or these undesired
consequences).
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Examples, examples. . .

Example (K-nearest neighbor classifiers)

The 1-NN can fit any data set perfectly (every data point is it's own nearest neighbor). But for
K > 1, the K-NN may not be able to reproduce any pattern of +1 in the labels. Hence its bias
is larger than the bias of the 1-NN classifier. With the variance, the opposite happens: as K
the number of neighbors increases, the decision regions of the K-NN classifier become more
stable to the random sampling effects. Thus, the variance decreases with K.

Example (Linear vs quadratic vs cubic ... predictors)

The quadratic functions include all linear functions, the cubics include all quadratics, and so
on. Linear classifiers will have more bias (less flexibility) than quadratic classifiers. On the
other hand, the variance of the linear classifier will be lower than that of the quadratic. The
case of regression is even more straightforward: if we fit the data with a higher degree
polynomial, the fit will be more accurate, but the variation of the polynomial f(x) for x values
not in the training set will be higher too.

Example (Kernel regression)
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Examples, examples... (2)

The bias-variance tradeoff can be observed on a continuous range for kernel regression. When
the kernel width h is near 0, f(x) from Lecture 1, equation (25) will fit the data in the training
set exactly [Exercise: prove this], but will have high variance. When h is large, f(x') will be
smoothed between x' and the other data points nearby, so it may be some distance from y'.
However, precisely because f(x) is supported by a larger neighborhood, it will have low
variance. [Exercise: find some intuitive explanations for why this is true] Hence, the
smoothness parameter h controls the trade-off between bias and variance.

Example (Regularization)

The same can be observed if one considers equation (??). For A = 0, one choses f that best
fits the data (minimizes L. For A — oo, f is chosen to minimize the penalty J, disregarding the
data completely. The latter case has 0 variance, but very large bias. Between these extreme
cases, the parameter \ controls the amount in which we balance fitting the data (variance)
with pulling f towards an a-priori “good” (bias).



Overfitting and Underfitting
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» Bias and variance are properties of the model class F (sometimes toghether with the
learning algorithm — more about this later). They are not properties of the parameters of f
(e.g B), and not of a particular f € F.

» Variance decreases to 0 with n, but bias may not. This implies that for larger sample sizes
n, the trade-off between variance and bias changes, and typically the "best” trade-off, aka
the best model, will have larger complexity.

» Overfitting= is the situation of small bias and too much variance (i.e. F is too complex).
In practice, if a learned predictor f has low L(f) but significantly higher L(f), we say that
the model has overfit the data D. (Of course we cannot know L(f) directly, and a
significant amount of work in statistics is dedicated to predicting L(f) for the purpose of
chosing the best model.)

» Underfitting=bias is too high, or the model is too simple (a.k.a has too few degrees of
freedom). [Exercise: what do you expect to see w.r.t. L(f) v.s. L(f) for an underfitted
model?]

Complexity, even though there are variations in its definition, and although it is not known exactly for most
model classes, is at the core of learning theory, the part of statistical theory that gives provable results about
the expected loss of a predictor.
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Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

Linear Regression of 0/1 Response

[ g g

FIGURE 2.1. A classification example wn two di-
mensions. The classes are coded as a binary variable
( = 0, = 1), and then fit by linear re-
gresston. The line 1s the deciston boundary defined by
:UTB = 0.5. The orange shaded region denotes that part

of input space classified as , while the blue region
18 classified as



Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two
dimenstons as in Figure 2.1. The classes are coded as
a binary variable ( = 0, = 1) and then fit
by 15-nearest-neighbor averaging as in (2.8). The pre-
dicted class 1s hence chosen by majority vote amongst
the 15-nearest neighbors.



Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

1-Nearest Neighbor Classifier
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FIGURE 2.3. The same classification example in two
dimenstons as in Figure 2.1. The classes are coded as
a binary variable ( = 0, = 1), and then
predicted by 1-nearest-neighbor classification.



Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

k — Number of Nearest Neighbors
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Degrees of Freedom — N/k

FIGURE 2.4. Misclassification curves for the simula-
tion example used 1n Figures 2.1, 2.2 and 2.3. A single
training sample of size 200 was used, and a test sample
of size 10,000. The orange curves are test and the blue
are training error for k-nearest-netghbor classification.
The results for linear regression are the bigger orange
and blue squares at three degrees of freedom. The pur-
ple line is the optimal Bayes error rate.



Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 2

Bayes Optimal Classifier

FIGURE 2.5. The optimal Bayes decision boundary
for the simulation example of Figures 2.1, 2.2 and 2.35.
Since the generating density is known for each class,
this boundary can be calculated exactly (Fxercise 2.2).
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FIGURE 2.11. Test and training error as a function
of model complexity.



What is observed ‘I
Double descent

b -
o
E under-fitting : over-fitting A under-parameterized over-parameterized
5 . Test risk Test risk
4%' TE : 'é “classical” “modern”
N;_,d m regime interpolating regime
E . .
: N -
g ~ o Training risk ~ Training risk:
sweet spot_ « — _ T~ . _interpolation threshold
Capacity of H Capacity of H

Belkin, Hsu, Ma, Mandal 2018

m Classical regime p <N

= Modern/Deep Learning/High dimensional regime N > n
Think N fixed, p increases, gamma=p/N
Training error = 0 (interpolation)
Test error decreases with p (or gamma)



