Lecture 8

B&V for Kernel Engression

Bias Case II

Overfitting, Underfitting, B-V tradeoff

Neural Networks (Start)

Lecture II: Prediction - Basic concepts

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

October, 2023

in Concepts

Parametric vs non-parametric

Generative and discriminative models for classification

Generative classifiers

Discriminative classifiers

Generative vs discriminative classifiers

Loss functions Bayes loss

Variance, bias and complexity

Case 1: With ftrue, Least Squares loss

Bias and Variance for Kernel Regression (Lecture II.1)

Case 2: Bias as as model (mis)fit

Sampling Variance

Reading HTF Ch.: 2.1–5,2.9, 7.1–4 bias-variance tradeoff, Murphy Ch.: 1., 8.6¹, Bach Ch.:

¹Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading

The "learning" problem

- ▶ Given
- ▶ a problem (e.g. recognize digits from $m \times m$ gray-scale images)
- ► a sample or (training set) of labeled data

$$\mathcal{D} = \{(x^1, y^1), (x^2, y^2), \dots (x^n, y^n)\}\$$

drawn i.i.d. from an unknown P_{XY}

- ▶ model class $\mathcal{F} = \{f\}$ = set of predictors to choose from
- Wanted
- lacktriangle a predictor $f\in\mathcal{F}$ that performs well on future samples from the same P_{XY}
 - "choose a predictor $f \in \mathcal{F}$ " = training/learning
 - "performs well on future samples" (i.e. f generalizes well) how do we measure this? how can we "guarantee" it?
 - lacktriangledown choosing ${\mathcal F}$ is the model selection problem about this later

Bias and variance: Preliminaries

Setup/What we have

- a data source P_{XY}
- a class of predictors F
- From P_{XY} we sample i.i.d. \mathcal{D}_n of size n. Hence $\mathcal{D}_n \sim P_{XY}^n$.
- ightharpoonup A training algorithm that estimates/chooses/learns \hat{f}_n from \mathcal{D}_n .
 - ightharpoonup minimize $\hat{L}_{f \in \mathcal{F}}$ (empirical loss) Example CART, Logistic Regression and all Max Likelihood methods
 - ▶ minimize over $f \in \mathcal{F}$ (regularized loss)

$$\hat{L}(f) + \lambda J(f) \tag{15}$$

with $\lambda > 0$ a regularization parameter Example Ridge Regression, SVM

other training method (e.g. K-NN, LDA)

Bias and Variance for parameter estimation

- ightharpoonup We want to estimate a parameter $\theta \in \Theta \subseteq \mathbb{R}$
- We use \mathcal{D}_n to obtain estimator $\hat{\theta}_{\mathcal{D}_n}$ which is a function of \mathcal{D}_n .
- $\triangleright \mathcal{D}_n$ is random, hence so is $\hat{\theta}_{\mathcal{D}_n}$.
- ► Bias= $(\hat{\theta}_{\mathcal{D}_n}) = E_{P_n^n}[\hat{\theta}_{\mathcal{D}_n}] \theta$
- ightharpoonup Variance= $Var_{P^n}(\hat{\theta}_{\mathcal{D}_n})$

Both Bias and Variance are computed under the distribution from which we sampled \mathcal{D}_n , denoted by P^n .

lacktriangle Example Estimating μ, σ^2 for $N(\mu, \sigma^2)$, $\mathcal{D}_n = \{x_{1:n}\} \subset \mathbb{R}$

$$\hat{\mu} = \frac{1}{n} \sum_{i} x^{i} \tag{16}$$

$$Bias(\hat{\mu}) = E[\hat{\mu} - \mu] = \mu - \mu = 0 \quad \hat{\mu} \text{ is unbiased}$$
 (17)

$$Var(\hat{\mu}) = \sigma^2/n \tag{18}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_i (x^i - \hat{\mu})^2 \tag{19}$$

$$Bias(\hat{\sigma}^2) = E[\hat{\sigma}^2 - \sigma^2] = \frac{n-1}{n}\sigma^2 - \sigma^2 = -\frac{1}{n}\sigma^2 \quad \hat{\sigma}^2 \text{ is biased}$$
 (20)

$$\hat{\sigma}^2 \sim \frac{\sigma^2}{n-1} \chi_{n-1}^2 \tag{21}$$

$$Var(\hat{\sigma}^2) = 2\sigma^2 \tag{22}$$

Bias and Variance in Supervised Learning/Prediction

Similarities

- We use \mathcal{D}_n to estimate $\hat{f}_n \in \mathcal{F}$
- $ightharpoonup \mathcal{D}_n$ is random, hence so if \hat{f}_n .
- ▶ Bias and variance are properties of \mathcal{F} , and depend on n Exercise Consider linear regression $f(x) = \beta^T x$, with $N(0, \sigma^2)$ noise. What are the bias and variance of this predictor?

Differences

- 1. \hat{f} is a function
- 2. We are interested in the predictions and not the parameters of \hat{f} .
- We don't always assume f^{true} exists.
- Several proposals to define bias and variance exist.
- What we need to know in this course/usually is qualitative

Two definitions for bias in ML

- Assuming f^{true} exists
 - "Classical" framework
 - ► Typical example: Least Squares loss
- 2. (No assumption of f^{true}) Bias is (in)ability of \mathcal{F} to fit the training set \mathcal{D}_n (i.e. to make $\hat{L}=0$)
 - 3. In both cases, Variance is the variance of predictor f(x) averaged over X

The Bias-Variance decomposition for L_{LS}

Assume true model P_{Y|X}

$$y = f(x) + \epsilon$$
 with $\epsilon \sim iid$, $E[\epsilon] = 0$, $Var(\epsilon) = \sigma^2$, $y, f(x), \epsilon \in \mathbb{R}$ (23)

 $ightharpoonup \hat{f}_n$ is estimated from \mathcal{D}_n

$$MSE(x) = E_{P_{XY}^{n}} \left[\left(\hat{f}_{n}(x) - f^{true}(x) \right)^{2} \right] \qquad (24)$$

$$= E_{P_{XY}^{n}} \left[\left(\hat{f}_{n}(x) - E_{P_{XY}^{n}}[\hat{f}_{n}(x)] + E_{P_{XY}^{n}}[\hat{f}_{n}(x)] - f^{true}(x) \right)^{2} \right] \qquad (25)$$

$$= \underbrace{E_{P_{XY}^{n}} \left[\left(\hat{f}_{n}(x) - E_{P_{XY}^{n}}[\hat{f}_{n}(x)] \right)^{2} \right]}_{Var\hat{f}_{n}(x)} + \underbrace{E_{P_{XY}^{n}} \left[\left(E_{P_{XY}^{n}}[\hat{f}_{n}(x)] - f^{true}(x) \right)^{2} \right]}_{Bias^{2}(\hat{f}_{n}(x))} + \underbrace{E_{P_{XY}^{n}} \left[\left(E_{P_{XY}^{n}}[\hat{f}_{n}(x)] - f^{true}(x) \right) \left(\hat{f}_{n}(x) - E_{P_{XY}^{n}}[\hat{f}_{n}(x)] \right) \right]}_{=0} \qquad (27)$$

- Note that $MSE(x) = E_{P_{Y|X}}[L_{LS}(y, \hat{f}_n(x))]$ Exercise Prove this Integrating over all $x \in \mathbb{R}$ w.r.t P_X
- $E_{P_X}[MSE(x)] \equiv E_{P_X}[E_{P_{Y|X}}[L_{LS}(y, \hat{f}_n(x))]] = E_{P_X}[Var(\hat{f}_n(x))] + E_{P_X}[Bias^2(\hat{f}_n(x))]$ (28)
- ▶ Bias-Variance Decomposition of L_{LS} : $L_{LS} = Var + Bias^2$

Case 2: Bias as model (mis)fit

- ▶ If no f^{true} assumed, bias measures the (in)ability of the model class \mathcal{F} to fit the data \mathcal{D}_n .
- ► Better fit ⇔ less bias
- We measure the fit by the loss L associated with the task, i.e $\hat{L}(\hat{f}_{\mathcal{D}_n}, \mathcal{D}_n)$
- ▶ Bias(\mathcal{F})= $E_{P(X,Y)^n}[\hat{L}(\hat{f}_{\underline{\mathcal{D}}_n},\underline{\mathcal{D}}_n)]$ (hence, bias is expected empirical loss).
- ▶ Richer or more complex models classes have less bias
 Example Bias(Linear) > Bias(Quadratic)
 Example Bias(1-NN) < Bias(K-NN), for K > 1
- Example Bias(Linear) ? Bias(K-NN) depends on P_{XY} !

Eval F by

min Î(f,D) f∈Ŧ

$$\hat{L} = \frac{1}{N} \sum_{i=1}^{N} L(y_i f(x_i))$$

F, C F2 llinear3 < 4 guadratis

³Not trivial, to find a reference.

Case 2: Bias as model (mis)fit

- If no f^{true} assumed, bias measures the (in)ability of the model class \mathcal{F} to fit the data \mathcal{D}_n .
- ► Better fit ⇔ less bias
- We measure the fit by the loss L associated with the task, i.e $\hat{L}(\hat{f}_{\mathcal{D}_n}, \mathcal{D}_n)$
- ▶ Bias(\mathcal{F})= $E_{P(X,Y)^n}[\hat{L}(\hat{f}_{\mathcal{D}_n},\mathcal{D}_n)]$ (hence, bias is expected empirical loss).
- ► Richer or more complex models classes have less bias Example Bias(Linear) > Bias(Quadratic)

Example Bias (1-NN) < Bias (K-NN), for K > 1

- E I D' (I') 2 D' (IV NIN) denombre on D. I
- Example Bias (Linear)? Bias (K-NN) depends on P_{XY} !
- ▶ In modern ML we consider sequences of model classes that can be ordered
 - by inclusion

$$\mathcal{F} \subset \mathcal{F}'$$
 then bias $(\mathcal{F}) \ge \text{bias}(\mathcal{F}')$ (29)

Example Linear \subset Quadratic, ... CART(L leaves) \subset CART(L+1 leaves) ..., Neural net (L layers) \subset ...

by complexity

$$\mathsf{complexity}(\mathcal{F}) \, \leq \, \mathsf{complexity}(\mathcal{F}') \quad \mathsf{then} \, \, \mathsf{bias}(\mathcal{F}) \geq \mathsf{bias}(\mathcal{F}') \tag{30}$$

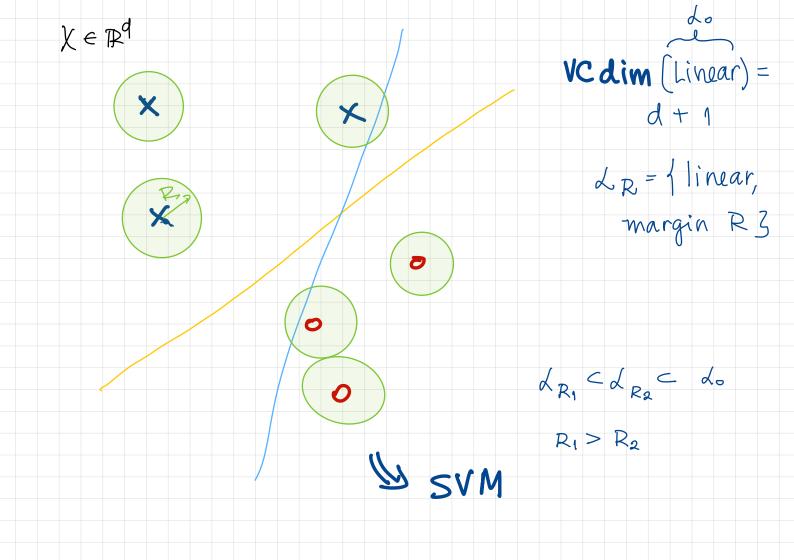
Example . . . complexity(Kernel(h)) \nearrow for $h \downarrow$, complexity(Ridge Regression, Lasso(λ)) \uparrow for $\lambda \downarrow$, complexity(Linear with margin R) \uparrow for $R \downarrow$

Larger data are harder to fit (hence more bias on average)³

I the same

When n? Bias-var tradeoff changes

³Not trivial, to find a reference.



Sampling variance

- ▶ Intuition: if we draw two different data sets $\mathcal{D}, \mathcal{D}' \sim P_{XY}$ (from the same distribution) we will obtain different predictors f, f'. Variance measures how different the predictions of f, f' can be on average.
- ▶ Variance at $x = Var_{P_{XY}^n}(\hat{f}_{\mathcal{D}_n}(x))$, where the randomness is over the sample \mathcal{D}_n
- ▶ Variance associated with predictor class \mathcal{F} is the expectation over P_X of the variance at x, i.e $E_{P_X}[Var_{P_X^n}(\hat{f}_{\mathcal{D}_n}(x))]$
- ▶ Variance depends on n, \mathcal{F} , and the data distribution $P_{\chi\gamma}$ Exercise If $P_{\gamma|\chi}$ is deterministic for all x, does it mean that the variance is 0?
- Richer model classes are subject to more variance

$$\mathcal{F} \subset \mathcal{F}'$$
 then $Var(\mathcal{F}) \leq Var(\mathcal{F}')$ for any f^*

Variance, bias and model complexity

- Synonyms: rich class = complex model = flexible model = high modeling power = many degrees of freedom = many parameters
- Evaluating the model complexity⁴/number of free parameters of a model class F is usually a difficult problem!

Non-parametric models # parameters depends on P_{XY} , smoothing parameter and n Parametric models # parameters NOT always equal to the number of parameters of f!

Example the classifier $f(x) = \operatorname{sgn}(\alpha x), x, \alpha \in \mathbb{R}$ depends on one parameter α but has ∞ degrees of freedom⁵!

Example the linear classifier and regressor on \mathbb{R}^d has (no more than) n+1 degrees of freedom

Example the complexity of a two layer neural net with m fixed is not known (but there are approximation results); the number of weights in f is obviously (m+1)(d+1)+1

Example For K-NN, the variance increases when K decreases

Example For pruned Decision Tree, the variance increases whith the number of levels

- ▶ The variance of a predictor increases with the complexity of \mathcal{F} .
- But complexity is the opposite of bias, so bias decrease with the complexity of F
- ► This is known as the Bias-Variance tradeoff

⁴There are several definitions of model complexity, but this holds for all definitions I know

⁵See VC-dimension later

The Bias-Variance tradeoff Come II.

Wanted property unwanted consequence what to do (for an \mathcal{F}) of \mathcal{F} not satisfying this property to fit D well Bias increase complexity -overfitting Variance < to be robust to sampling noise decrease complexity under fitting

The bias-variance tradeoff is the observation that the better a predictor class \mathcal{F} is able to fit any given sample, the more sensitive the selected f will be to sampling noise. In this course we will learn some ways of balancing these desired properties (or these undesired

consequences). n 1 always better !!

note always better !!

complexity of
$$\overline{f}$$

$$L \leq \int_{-\infty}^{\infty} + O(\frac{1}{\sqrt{n}}) \quad w.p. \quad 1-\delta$$

Expected Paias Variance

Examples, examples. . .

Example (K-nearest neighbor classifiers)

The 1-NN can fit any data set perfectly (every data point is it's own nearest neighbor). But for K>1, the K-NN may not be able to reproduce any pattern of ± 1 in the labels. Hence its bias is larger than the bias of the 1-NN classifier. With the variance, the opposite happens: as K the number of neighbors increases, the decision regions of the K-NN classifier become more stable to the random sampling effects. Thus, the variance decreases with K.

Example (Linear vs quadratic vs cubic . . . predictors)

The quadratic functions include all linear functions, the cubics include all quadratics, and so on. Linear classifiers will have more bias (less flexibility) than quadratic classifiers. On the other hand, the variance of the linear classifier will be lower than that of the quadratic. The case of regression is even more straightforward: if we fit the data with a higher degree polynomial, the fit will be more accurate, but the variation of the polynomial f(x) for x values not in the training set will be higher too.

Example (Kernel regression)

Examples, examples... (2)

The bias-variance tradeoff can be observed on a continuous range for **kernel regression**. When the kernel width h is near 0, f(x) from Lecture 1, equation (25) will fit the data in the training set exactly [Exercise: prove this], but will have high variance. When h is large, $f(x^i)$ will be smoothed between x^i and the other data points nearby, so it may be some distance from y^i . However, precisely because f(x) is supported by a larger neighborhood, it will have low variance. [Exercise: find some intuitive explanations for why this is true] Hence, the smoothness parameter h controls the trade-off between bias and variance.

Example (Regularization)

The same can be observed if one considers equation (15). For $\lambda=0$, one choses f that best fits the data (minimizes \hat{L} . For $\lambda\to\infty$, f is chosen to minimize the penalty J, disregarding the data completely. The latter case has 0 variance, but very large bias. Between these extreme cases, the parameter λ controls the amount in which we balance fitting the data (variance) with pulling f towards an a-priori "good" (bias).

October, 2023

Overfitting and Underfitting

- ▶ Bias and variance are properties of the model class \mathcal{F} (sometimes toghether with the learning algorithm more about this later). They are not properties of the parameters of f (e.g β), and not of a particular $f \in \mathcal{F}$.
- ▶ Variance decreases to 0 with *n*, but bias may not. This implies that for larger sample sizes *n*, the trade-off between variance and bias changes, and typically the "best" trade-off, aka the best model, will have larger complexity.
- ▶ Overfitting= is the situation of small bias and too much variance (i.e. \mathcal{F} is too complex). In practice, if a learned predictor f has low $\hat{L}(f)$ but significantly higher L(f), we say that the model has *overfit* the data \mathcal{D} . (Of course we cannot know L(f) directly, and a significant amount of work in statistics is dedicated to predicting L(f) for the purpose of chosing the best model.)
- ▶ Underfitting=bias is too high, or the model is too simple (a.k.a has too few degrees of freedom). [Exercise: what do you expect to see w.r.t. $\hat{L}(f)$ v.s. L(f) for an underfitted model?]

Complexity, even though there are variations in its definition, and although it is not known exactly for most model classes, is at the core of learning theory, the part of statistical theory that gives provable results about the expected loss of a predictor.

Linear Regression of 0/1 Response

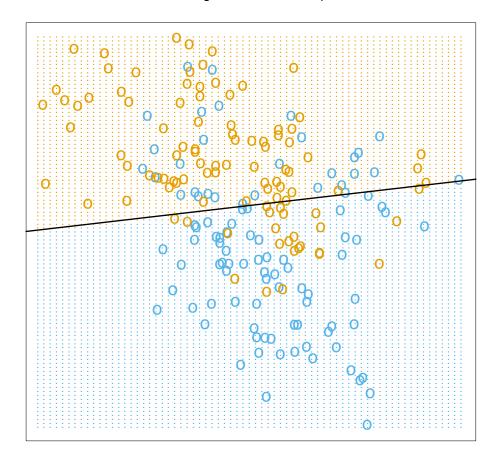


FIGURE 2.1. A classification example in two dimensions. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression. The line is the decision boundary defined by $x^T \hat{\beta} = 0.5$. The orange shaded region denotes that part of input space classified as ORANGE, while the blue region is classified as BLUE.

15-Nearest Neighbor Classifier

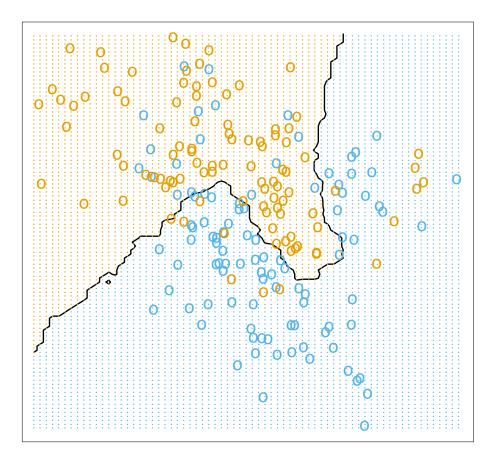


FIGURE 2.2. The same classification example in two dimensions as in Figure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence chosen by majority vote amongst the 15-nearest neighbors.

1-Nearest Neighbor Classifier

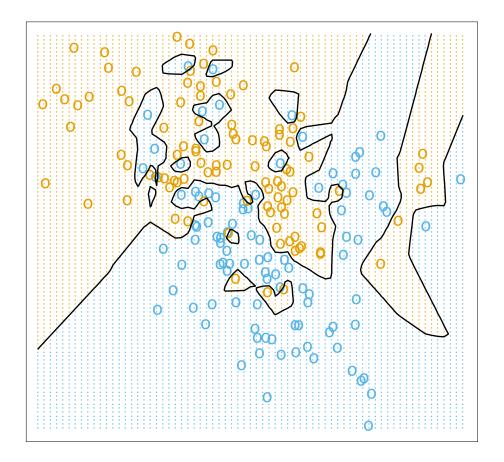


FIGURE 2.3. The same classification example in two dimensions as in Figure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then predicted by 1-nearest-neighbor classification.

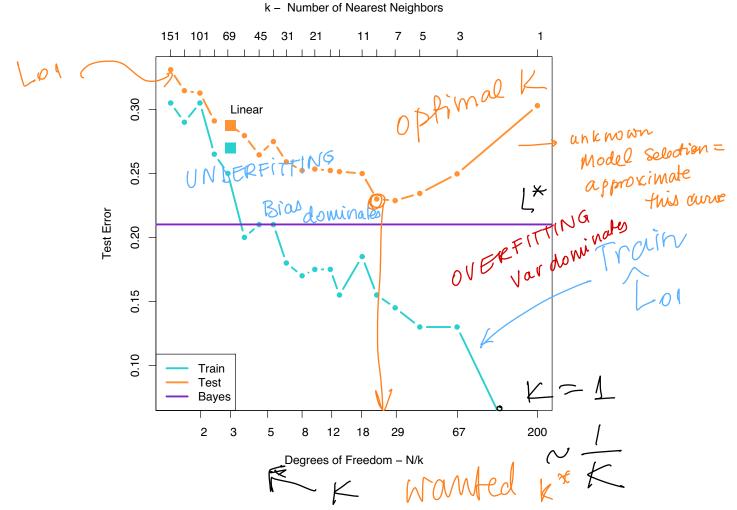
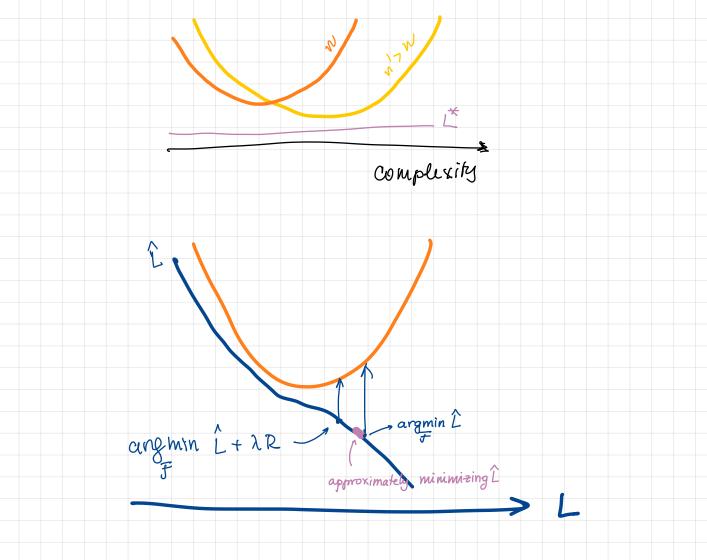


FIGURE 2.4. Misclassification curves for the simulation example used in Figures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test sample of size 10,000. The orange curves are test and the blue are training error for k-nearest-neighbor classification. The results for linear regression are the bigger orange and blue squares at three degrees of freedom. The purple line is the optimal Bayes error rate.



Bayes Optimal Classifier

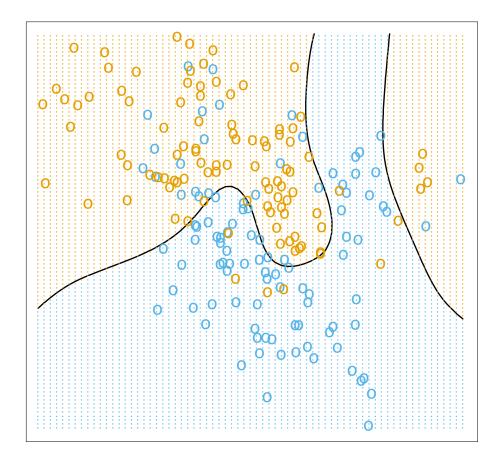


FIGURE 2.5. The optimal Bayes decision boundary for the simulation example of Figures 2.1, 2.2 and 2.3. Since the generating density is known for each class, this boundary can be calculated exactly (Exercise 2.2).

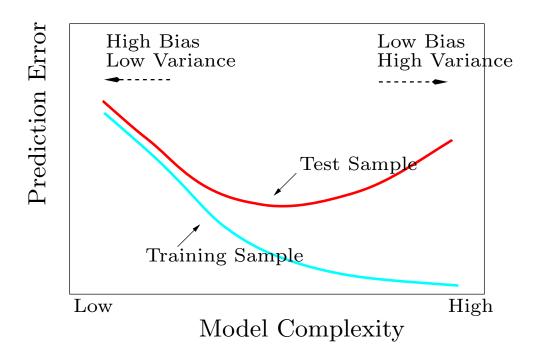
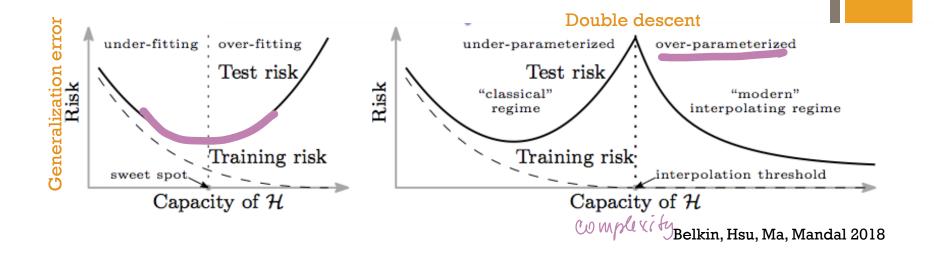


FIGURE 2.11. Test and training error as a function of model complexity.

+

What is observed



- Classical regime p < N
- Modern/Deep Learning/High dimensional regime N > n
 - Think N fixed, p increases, gamma=p/N
 - Training error = 0 (interpolation)
 - Test error decreases with p (or gamma)

Aarina Meila: Lecture III

Lecture Notes III - Neural Networks

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

October, 2023

Two-layer Neural Networks

Logistic Repressions

Multi-layer neural networks

Backmopapation

A zoo of multilayer networks

Archi tectures

Reading HTF Ch.: 11.3 Neural networks, Murphy Ch.: (16.5 neural nets), Bach Ch.: –, Deep Learning Book (Goodfellow, Bengio, Courville) 6.1-4, ResNet 7.6, ConvNet 9., Autoencoders 14.1, Dive Into Deep Learning 4.1-4.3.

Two-layer Neural Networks

The activation function (a term borrowed from neuroscience) is any continuous, bounded and strictly increasing function on R. Almost universally, the activation function is the logistic (or sigmoid)

$$\phi(u) = \frac{1}{1 + e^{-u}} \tag{1}$$

output
$$f(x) = \sum_{j=1}^{m} \beta_{j} z_{j} = \sum_{j=1}^{m} \beta_{j} \phi(\sum_{k=1}^{d} w_{kj} x_{k}) \in (-\infty, \infty)$$
 (2)

Note that this is just a linear combination of logistic functions.

$$X \in \mathbb{R}^d$$
 \mathbb{R}^d
 \mathbb{R}^d

¹In neural net terminology, each variable z_i is a unit, the bottom layer is hidden, while top one is visible, and the units in this layer are called hidden/visible units as well. Sometimes the inputs are called input units; imagine neurons or individual circuits in place of each x, y, z variable.