CSE 547/ SIAT 348

4/4/25

Lecture 2

. sit front next week

· Canvas up = syllabus · web

LI Chritering

Lecture I – Big Data in Machine Learning

Marina Meilă

Department of Statistics University of Washington

STAT 548/CSE 547 Spring, 2025

Big data and Machine Learning I

Big Data has implications for ML at many levels

- Storage
- distributed algo bring algo / computation to data

 preserve
 data privacy FEDERTED
 learning • may not fit in local memory —
 - expensive/slow to move around
 - I/O expensive/slow
- Access
 - serial/by block, not random
- Indexing
 - Preprocessing steps that allow faster access during
- Computing
 - Parallelization when possible
 - Automation of resource management (Hadoop, Spark)
- Algorithms
 - predominantly sub-quadratic, i.e. $\mathcal{O}(n)$, $\tilde{\mathcal{O}}(n)$
 - sub-linear, i.e. o(n) when possible sampling, Stochastic Gradient Descent (SGD)

find all xi, xi so that $||x-x_i|| \le \epsilon - O(n^2)$ i,j=1:n Finding near neighbors

Marina Meilă (Statistics)

run time is
$$O(n)$$
 "grows like" n
 $r(n) = c_0 + c_1 \cdot m$
 $r(n) \leq c_0 \cdot m$

Tact $c_0 \cdot m$
 $c_0 \cdot m$
 $r(n) \leq c_0 \cdot m$
 $r(n) \leq c_0 \cdot m$

$$P = 1/2/3,$$

$$P(n) = C. (n) \Rightarrow (n)$$

$$P(n) = C. (n) \Rightarrow (n)$$

$$P(n) = C. (n) \Rightarrow (n)$$

$$P(n) = (n) = (n)$$

$$P(n) = (n) = (n)$$

$$P(n) = (n)$$

$$P(n$$

Big data and Machine Learning II

- Tasks
- sks finite storage M

 streaming wodel for advertising

 - on-line learning target of learning changes with time
 - approximate rather than exact solutions (e.g. nearest-neighbors)
- Statistical
 - new problems (streaming, bandits)
 - what is i.i.d. sampling anyways? (on-line learning)
 - approximation and sampling (e.g. how to sample from a data stream)
 - can ask more detailed questions non-parametric statistics
 - more spurious patterns to find validation without human intervention
 - often high dimension D

b large \Rightarrow NBED for large n

Solves curse of dimensionality? No

D=#ques >> n=#parients S=5 sparity Bj=0 for all j&S 151=s

4= BX+ &

deslgaD ≪w

Parametric vs. non-parametric
$$\Sigma \in \mathbb{R}^{D \times D}$$
 $\rightarrow \text{div}_n = D + \frac{D(D+1)}{2}$

A mathematical definition . Augustion $y = \beta^T \times + \epsilon$ $\rightarrow \text{div}_n = D$ indep. of w

• A model class \mathcal{F} is parametric if it is finite-dimensional, otherwise it is non-parametric

In other words

- When we estimate a parametric model from data, there is a fixed number of parameters. (you can think of them as one for each dimension, although this is not always true), that we need to estimate to obtain an estimate $\hat{f} \in \mathcal{F}$.
- The parameters are meaningful. E.g. the β_i in logistic regression has a precise meaning: the component of the normal to the decision boundary along coordinate i.
- \rightarrow The dimension of β does not change if the sample size n increases.

Non-parametric models – Some intuition

- ullet When the model is non-parametric, the model class ${\cal F}$ is a function space .
- ullet The \hat{f} that we estimate will depend on some numerical values (and we could call them parameters), but these values have little meaning taken individually .
- The number of values needed to describe \hat{f} generally grows with n. Examples In the Nearest neighbor and kernel predictors, we have to store a II the data points, thus the number of values describing the predictor f grows (linearly) with the sample size. Exercise Does the number of values describing f always grow linearly with the sample size? Does it have to always grow to infinity? Doe s it have to always grow in the same way for a given \mathcal{F} ?
- Non-parametric models often have a smoothness parameter.
 Examples of smoothness parameters K in K-nearest neighbor, h the kernel bandwidth in kernel regression.
 - To make matters worse, a smoothness parameter is not a parameter! More p recisely it is not a parameter of an $f \in \mathcal{F}$, because it is not estimated from the data, but a descriptor of the model class \mathcal{F} .
- We will return to smoothness parameters later in this lecture.

5/

Parametric vs. non-parametric models

Finite dimension

Parametric

- Linear, logistic regression
- Linear Discriminant Analysis (LDA)
- Neural networks (if not very large)
- Naive Bayes
- CART with L levels, Decision troops
- Clustering by k-means, finite mixture models
- Spectral clustering of graphs

+ 0 + 0 + 0 + 0 + 0

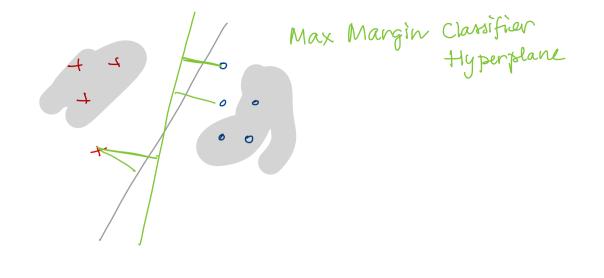
<u>Infinite dim</u>

Non-parametric

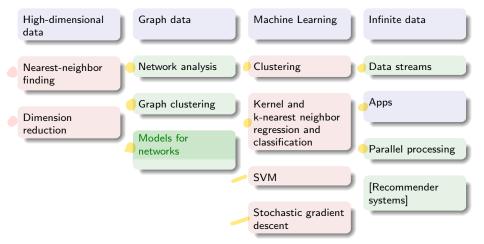
- Nearest-neighbor classifiers and regressors
- Kernel (e.g. Nataraya-Watson)
 regression
- Monotonic regression
- 👝 Support Vector Machines 🕈
- networks

 Gaussian processes PS W
 - Dirichlet Process Mixture Models (DPMM)
 - Clustering by level sets or mode-finding
 Afficient based electronics
 - Affinity based clustering
 - Manifold learning
 - · L NOT fixed

DT can perfectly clarify for L large enough



This course



Leet code

- Ai mi l'anities both evde problems

Pouse
· threes of evde

preorder traversal