CSE 547/ STAT 548

Lecture II – Clustering – Part I: Parametric clustering

Marina Meilă mmp@stat.washington.edu

Department of Statistics University of Washington

CSE 547/STAT 548 Spring 2025

 < □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡ >

Marina Meila (UW)

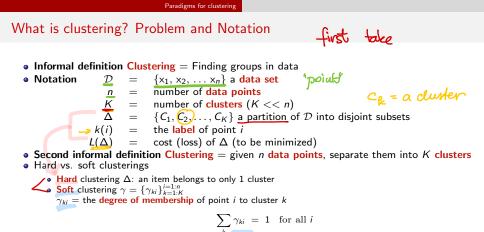
🚺 Paradigms for clustering 🛛 🚓

- Parametric clustering algorithms (K given)
 - Cost based / hard clustering
 - Model based / soft dustering
 - Outliers

Reading MMDS Ch.: 7.3 K-means HTF Ch.:14.3, Murphy Ch.: 11.[1], 11.2.1-3, 11.3, Ch 25

イロト イヨト イヨト イヨト

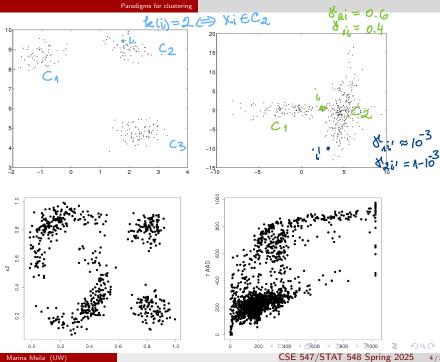
CSE 547/STAT 548 Spring 2025

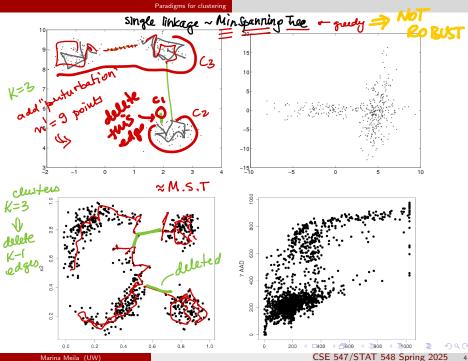


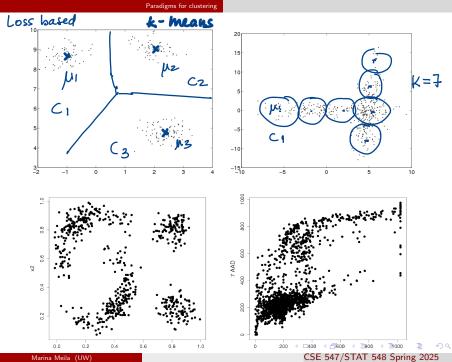
◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

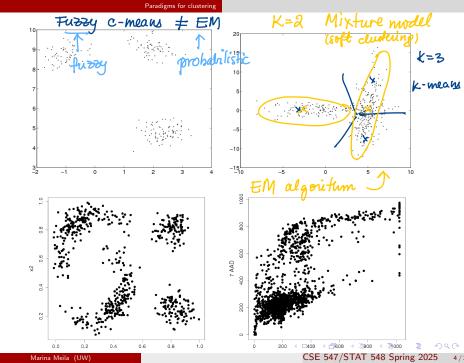
CSE 547/STAT 548 Spring 2025 3/

(usually associated with a probabilistic model)









Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints (about K, shape of clusters)

	• Data = vectors $\{x_i\}$	in R ^d r-means, single linkage, min diam.
	Parametric	Cost based [hard]
	(K known)	Lin \mathbb{R}^d Cost based [hard] K- means, single lineage, min diam. Model based [soft] $\approx Kc$ fara metric
	Non-parametric	Dirichlet process mixtures [soft] - "complexity" " with h
	(<i>K</i> determined	Information bottleneck [soft]
	by algorithm)	Dirichlet process mixtures [soft] Information bottleneck [soft] Modes of distribution [hard] Gaussian blurring mean shift? [hard]
• Data = similarities between pairs of points $[S_{ij}]_{i,j=1:n}$, $S_{ij} = S_{ji} \ge 0$ Similarity based (lustering		
2	Affinity propagatic	typical cuts [hard non-parametric, cost based] on [hard/soft non-parametric]

イロン イ団 とく ヨン イヨン

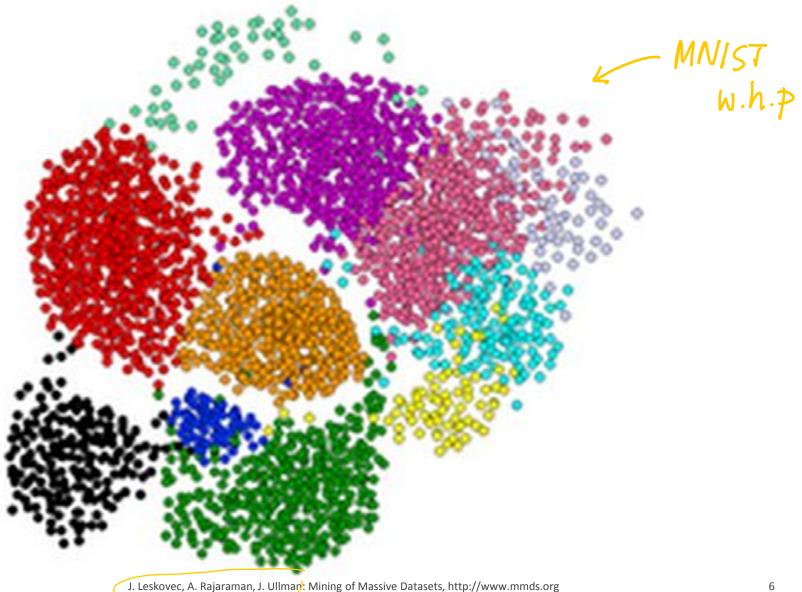
CSE 547/STAT 548 Spring 2025

э

Classification vs Clustering

	Classification	Clustering
Cost (or Loss) L	Expectd error	many! (probabilistic or not)
	Supervised	Unsupervised
Generalization	Performance on new	Performance on current
	data is what matters	data is what matters
K	Known	Unknown
"Goal"	Prediction	Exploration Lots of data to explore!
Stage	Mature	Still young
of field		

Clustering is a hard problem!



Why is it hard?

- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy
- And in most cases, looks are not deceiving
- Many applications involve not 2, but 10 or 10,000 dimensions **High-dimensional spaces look different:** Almost all pairs of points are at about the same distance > loose info? -> how to verify \$\Delta is good ??

Clustering Problem: Galaxies

- A catalog of 2 billion "sky objects" represents objects by their radiation in 7 dimensions (frequency bands)
- Problem: Cluster into similar objects, e.g., galaxies, nearby stars, quasars, etc.
- Sloan Digital Sky Survey

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Clustering Problem: Music CDs

- Intuitively: Music divides into categories, and customers prefer a few categories
 - But what are categories really?
- Represent a CD by a set of customers who bought it:
 I in Xij=1 if j listens toi
 X: = [Xii - ···Xib] E 40,13
- Similar CDs have similar sets of customers, and vice-versa

Clustering Problem: Music CDs

Space of all CDs:

- Think of a space with one dim. for each customer
 - Values in a dimension may be 0 or 1 only
 - A CD is a point in this space (x₁, x₂,..., x_k), where x_i = 1 iff the ith customer bought the CD

Clustering Problem: Documents

Finding topics:

- Represent a document by a vector $(x_1, x_2, ..., x_k)$, where $x_j = 1$ iff the *j*th word (in some order) appears in the document
 - It actually doesn't matter if k is infinite; i.e., we don't limit the set of words
- Documents with similar sets of words may be about the same topic

Lecture II - Clustering - Part II: Non-parametric clustering

Marina Meilă mmp@stat.washington.edu

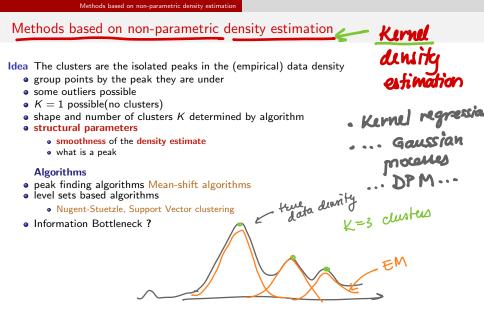
> Department of Statistics University of Washington

CSE 547/STAT 548 Winter 2022

Marina Meila (UW)

2 Methods based on non-parametric density estimation

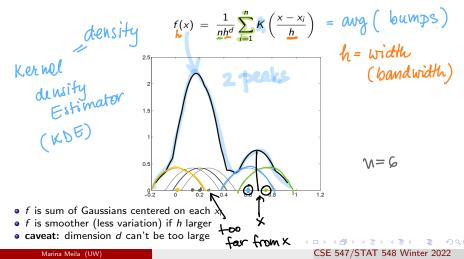
Marina Meila (UW)

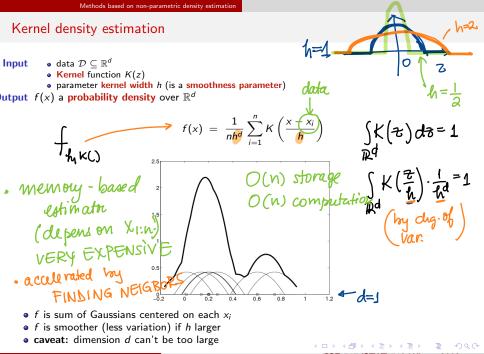


Kernel density estimation

Input • data $\mathcal{D} \subseteq \mathbb{R}^d$

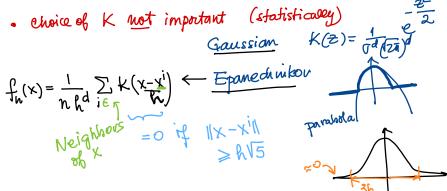
- Kernel function K(z)
- parameter kernel width h (is a smoothness parameter)
- output f(x) a probability density over \mathbb{R}^d





The kernel function

- Example $K(z) = \frac{1}{(2\pi)^{d/2}} e^{-||z||^2/2}, \ z \in \mathbb{R}^d$ is the Gaussian kernel
- In general
 - K() should represent a density on \mathbb{R}^d , i.e $K(z) \ge 0$ for all z and $\int K(z)dz = 1$
 - K() symmetric around 0, decreasing with ||z||
- In our case, K must be differentiable



イロト 不得 トイヨト イヨト

```
expensive

improved by f. neighbors

don't know "shape"

adapts to shape of true f

n \rightarrow \infty

h \gg with n
```