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1 Paradigms for clustering

2 Parametric clustering algorithms (K given)
Cost based / hard clustering
Model based / soft clustering
Outliers

Reading MMDS Ch.: 7.3 K-means HTF Ch.:14.3, Murphy Ch.: 11.[1], 11.2.1-3, 11.3, Ch 25
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Paradigms for clustering

What is clustering? Problem and Notation

Informal definition Clustering = Finding groups in data
Notation D = {x1, x2, . . . xn} a data set

n = number of data points

K = number of clusters (K << n)
� = {C1,C2, . . . ,CK} a partition of D into disjoint subsets

k(i) = the label of point i
L(�) = cost (loss) of � (to be minimized)

Second informal definition Clustering = given n data points, separate them into K clusters

Hard vs. soft clusterings
Hard clustering �: an item belongs to only 1 cluster
Soft clustering � = {�ki}i=1:n

k=1:K
�ki = the degree of membership of point i to cluster k

X

k

�ki = 1 for all i

(usually associated with a probabilistic model)
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Paradigms for clustering

(from ?)
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Paradigms for clustering

Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K , shape of clusters)

Data = vectors {xi} in Rd

Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]

Gaussian blurring mean shift? [hard]
Data = similarities between pairs of points [Sij ]i,j=1:n, Sij = Sji � 0 Similarity based

clustering

Graph partitioning spectral clustering [hard, K fixed, cost based]
typical cuts [hard non-parametric, cost based]

A�nity propagation [hard/soft non-parametric]
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Paradigms for clustering

Classification vs Clustering

Classification Clustering

Cost (or Loss) L Expectd error many! (probabilistic or not)
Supervised Unsupervised

Generalization Performance on new Performance on current
data is what matters data is what matters

K Known Unknown
“Goal” Prediction Exploration Lots of data to explore!

Stage Mature Still young
of field
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 Clustering in two dimensions looks easy
 Clustering small amounts of data looks easy
 And in most cases, looks are not deceiving

 Many applications involve not 2, but 10 or 
10,000 dimensions

 High-dimensional spaces look different: 
Almost all pairs of points are at about the 
same distance

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



 A catalog of 2 billion “sky objects” represents 
objects by their radiation in 7 dimensions 
(frequency bands)

 Problem: Cluster into similar objects, e.g., 
galaxies, nearby stars, quasars, etc.

 Sloan Digital Sky Survey

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 8



 Intuitively: Music divides into categories, and 
customers prefer a few categories
 But what are categories really?

 Represent a CD by a set of customers who 
bought it:

 Similar CDs have similar sets of customers, 
and vice-versa

9J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Space of all CDs:
 Think of a space with one dim. for each 

customer
 Values in a dimension may be 0 or 1 only

 A CD is a point in this space (x1, x2,…, xk), 
where xi = 1 iff the i th customer bought the CD

 For Amazon, the dimension is tens of millions

 Task: Find clusters of similar CDs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 10



Finding topics:
 Represent a document by a vector  

(x1, x2,…, xk), where xi = 1 iff the i th word 
(in some order) appears in the document
 It actually doesn’t matter if k is infinite; i.e., we 

don’t limit the set of words

 Documents with similar sets of words 
may be about the same topic

11J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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1 Paradigms for clustering

2 Methods based on non-parametric density estimation

3 Model-based: Dirichlet process mixture models
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Methods based on non-parametric density estimation

Methods based on non-parametric density estimation

Idea The clusters are the isolated peaks in the (empirical) data density
group points by the peak they are under
some outliers possible
K = 1 possible(no clusters)
shape and number of clusters K determined by algorithm
structural parameters

smoothness of the density estimate
what is a peak

Algorithms
peak finding algorithms Mean-shift algorithms
level sets based algorithms

Nugent-Stuetzle, Support Vector clustering

Information Bottleneck ?
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Methods based on non-parametric density estimation

Kernel density estimation

Input data D ✓ Rd

Kernel function K(z)
parameter kernel width h (is a smoothness parameter)

Output f (x) a probability density over Rd

f (x) =
1

nhd

nX

i=1

K

✓
x � xi

h

◆

f is sum of Gaussians centered on each xi
f is smoother (less variation) if h larger
caveat: dimension d can’t be too large
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Methods based on non-parametric density estimation

The kernel function

Example K(z) = 1
(2⇡)d/2

e�||z||2/2, z 2 Rd is the Gaussian kernel

In general

K() should represent a density on Rd , i.e K(z) � 0 for all z and
R
K(z)dz = 1

K() symmetric around 0, decreasing with ||z||
In our case, K must be di↵erentiable
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