


Lecture II – Clustering – Part I: Parametric clustering

Marina Meilă
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1 Paradigms for clustering

2 Parametric clustering algorithms (K given)
Cost based / hard clustering
Model based / soft clustering
Outliers

Reading MMDS Ch.: 7.3 K-means HTF Ch.:14.3, Murphy Ch.: 11.[1], 11.2.1-3, 11.3, Ch 25
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Paradigms for clustering

What is clustering? Problem and Notation

Informal definition Clustering = Finding groups in data
Notation D = {x1, x2, . . . xn} a data set

n = number of data points

K = number of clusters (K << n)
� = {C1,C2, . . . ,CK} a partition of D into disjoint subsets

k(i) = the label of point i
L(�) = cost (loss) of � (to be minimized)

Second informal definition Clustering = given n data points, separate them into K clusters

Hard vs. soft clusterings
Hard clustering �: an item belongs to only 1 cluster
Soft clustering � = {�ki}i=1:n

k=1:K
�ki = the degree of membership of point i to cluster k

X

k

�ki = 1 for all i

(usually associated with a probabilistic model)
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Paradigms for clustering

(from ?)
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Paradigms for clustering

Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K , shape of clusters)

Data = vectors {xi} in Rd

Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]

Gaussian blurring mean shift? [hard]
Data = similarities between pairs of points [Sij ]i,j=1:n, Sij = Sji � 0 Similarity based

clustering

Graph partitioning spectral clustering [hard, K fixed, cost based]
typical cuts [hard non-parametric, cost based]

A�nity propagation [hard/soft non-parametric]
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Paradigms for clustering

Classification vs Clustering

Classification Clustering

Cost (or Loss) L Expectd error many! (probabilistic or not)
Supervised Unsupervised

Generalization Performance on new Performance on current
data is what matters data is what matters

K Known Unknown
“Goal” Prediction Exploration Lots of data to explore!

Stage Mature Still young
of field
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 6



7

 Clustering in two dimensions looks easy
 Clustering small amounts of data looks easy
 And in most cases, looks are not deceiving

 Many applications involve not 2, but 10 or 
10,000 dimensions

 High-dimensional spaces look different: 
Almost all pairs of points are at about the 
same distance

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



 A catalog of 2 billion “sky objects” represents 
objects by their radiation in 7 dimensions 
(frequency bands)

 Problem: Cluster into similar objects, e.g., 
galaxies, nearby stars, quasars, etc.

 Sloan Digital Sky Survey

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 8



 Intuitively: Music divides into categories, and 
customers prefer a few categories
 But what are categories really?

 Represent a CD by a set of customers who 
bought it:

 Similar CDs have similar sets of customers, 
and vice-versa

9J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Space of all CDs:
 Think of a space with one dim. for each 

customer
 Values in a dimension may be 0 or 1 only

 A CD is a point in this space (x1, x2,…, xk), 
where xi = 1 iff the i th customer bought the CD

 For Amazon, the dimension is tens of millions

 Task: Find clusters of similar CDs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 10



Finding topics:
 Represent a document by a vector  

(x1, x2,…, xk), where xi = 1 iff the i th word 
(in some order) appears in the document
 It actually doesn’t matter if k is infinite; i.e., we 

don’t limit the set of words

 Documents with similar sets of words 
may be about the same topic

11J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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1 Paradigms for clustering

2 Methods based on non-parametric density estimation

3 Model-based: Dirichlet process mixture models
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Methods based on non-parametric density estimation

Methods based on non-parametric density estimation

Idea The clusters are the isolated peaks in the (empirical) data density
group points by the peak they are under
some outliers possible
K = 1 possible(no clusters)
shape and number of clusters K determined by algorithm
structural parameters

smoothness of the density estimate
what is a peak

Algorithms
peak finding algorithms Mean-shift algorithms
level sets based algorithms

Nugent-Stuetzle, Support Vector clustering

Information Bottleneck ?
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Methods based on non-parametric density estimation

Kernel density estimation

Input data D ✓ Rd

Kernel function K(z)
parameter kernel width h (is a smoothness parameter)

Output f (x) a probability density over Rd

f (x) =
1

nhd

nX

i=1

K

✓
x � xi

h

◆

f is sum of Gaussians centered on each xi
f is smoother (less variation) if h larger
caveat: dimension d can’t be too large

Marina Meila (UW) CSE 547/STAT 548 Winter 2022 7 / 31



Methods based on non-parametric density estimation

Kernel density estimation

Input data D ✓ Rd

Kernel function K(z)
parameter kernel width h (is a smoothness parameter)

Output f (x) a probability density over Rd

f (x) =
1

nhd

nX

i=1

K

✓
x � xi

h

◆

f is sum of Gaussians centered on each xi
f is smoother (less variation) if h larger
caveat: dimension d can’t be too large

Marina Meila (UW) CSE 547/STAT 548 Winter 2022 7 / 31



Methods based on non-parametric density estimation

The kernel function

Example K(z) = 1
(2⇡)d/2

e�||z||2/2, z 2 Rd is the Gaussian kernel

In general

K() should represent a density on Rd , i.e K(z) � 0 for all z and
R
K(z)dz = 1

K() symmetric around 0, decreasing with ||z||
In our case, K must be di↵erentiable

Marina Meila (UW) CSE 547/STAT 548 Winter 2022 8 / 31




