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Paradigms for clustering

What is clustering? Problem and Notation

o Informal definition Clustering = Finding groups in data

o Notation D = {xi1, X2, ... Xp} a data set
n = number of data points
K = number of clusters (K << n)
A = {G,G,...,Ck} a partition of D into disjoint subsets
k(i) = the label of point i
L(A) = cost (loss) of A (to be minimized)
@ Second informal definition Clustering = given n data points, separate them into K clusters

o Hard vs. soft clusterings

o Hard clustering A: an item belongs to only 1 cluster
. i=1:
o Soft clustering v = {Vki } o1k
vk = the degree of membership of point i to cluster k

Z’Y"" = 1 foralli
k

(usually associated with a probabilistic model)
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Methods based on non-parametric density estimation

Methods based on non-parametric density estimation

Idea The clusters are the isolated peaks in the (empirical) data density
@ group points by the peak they are under
some outliers possible
K =1 possible(no clusters)
shape and number of clusters K determined by algorithm
structural parameters
o smoothness of the density estimate
e what is a peak

Algorithms

o peak finding algorithms Mean-shift algorithms
@ level sets based algorithms

o Nugent-Stuetzle, Support Vector clustering
o Information Bottleneck ?
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Methods based on non-parametric density estimation

Kernel density estimation

Input o data D C RY
o Kernel function K(z)
o parameter kernel width h (is a smoothness parameter)

utput f(x) a probability density over RY

f(x) = #gK(X;X’)

-0.2 ] 0.2 0.4 0.6 08 1 12

@ f is sum of Gaussians centered on each x;
o f is smoother (less variation) if h larger
@ caveat: dimension d can't be too large
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Methods based on non-parametric density estimation

The kernel function
e Example K(z) = (271':;':’/2 e*‘|2”2/27 z € RY is the Gaussian kernel

o In general
o K() should represent a density on R, i.e K(z) > 0 for all z and [ K(z)dz = 1

o K() symmetric around 0, decreasing with ||z||

@ In our case, K must be differentiable
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Mean shift algorithms

Idea find points with Vf(x) =0
Assume K(z) = e*‘|z|‘2/2/\/27r Gaussian kernel

1 <& X — Xj
V00 = o5 DK )
Local max of f is solution of implicit equation
7:1 XiK(X_hX"

X =

i KCEFY)
—— ——

the mean shiftm(x)

Algorithm Simple Mean Shift
Input Data D = {x;}i=1.n, kernel K(z), h
fori=1:n
O X +— X
@ iterate x < m(x) until convergence to m;

@ group points with same m; in a cluster
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Methods based on non-parametric density estimation

Remarks

©0

mean shift iteration guaranteed to converge to a max of f
computationally expensive
a faster variant...

Algorithm Mean Shift (Comaniciu-Meer)
Data D = {x;}i=1.n, kernel K(z), h
select g points {x;}j—1.q = Dqg C D
that cover the data well
for j € Dq
O X — Xj
@ iterate x <~ m(x) until convergence to mj
group points in Dy with same m; in a cluster
assign points in D \ Dy to the clusters by the nearest-neighbor method

k(i) = k(argmin ||x; — x;
() (jqu [Ixi = xj1[)

Marina Meila (UW) CSE 547 /STAT 548 Winter 2022



Methods based on non-parametric density estimation

Idea

o like Simple Mean Shift but points are shifted to new locations
o the density estimate f changes
@ becomes concentrated around peaks very fast

Algorithm Gaussian Blurrring Mean Shift (GBMS)
Input Data D = {x;},—1.n, Gaussian kernel K(z), h
@ lterate until STOP

@ for i =1:n compute m(x;)
@ fori=1:n x + m(x)
Remarks

e all x; converge to a single point
= need to stop before convergence
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Methods based on non-parametric density estimation

Empirical stopping criterion ?

o define ef = ||xf — x!71|| the change in x; at t

o define H(e') the entropy of the histogram of {ef}
o STOP when 3°7, ef/n <tol OR |H(et) — H(ef~1)| <tol’

Convergence rate If true f Gaussian, convergence is cubic
lIxf = x*1] < ClIxf = x*|?

very fast!!
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The Nugent-Stuetzle algorithm

Algorithm Nugent-Stuetzle
Input Data D = {x;}i=1.n, kernel K(z)
@ Compute KDE f(x) for chosen h
@ forlevels 0 < h < h<...<Il <...<Ig>sup,f(x)
® find level set L, = {x|f(x) > I} of f
@ if L, disconnected then each connected component is a cluster — (G, 1, Cr 2, ... Cr k,)

utput clusters {(Cr.1, Cr 2, ... Cr i, )} r=1:R
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Methods based on non-parametric density estimation

Remarks

every cluster C, , C some cluster C,_q s
therefore output is hierarchical clustering
some levels can be pruned (if no change, i.e. K, = K,_1)
algorithm can be made recursive, i.e. efficient
finding level sets of f tractable only for d = 1,2
for larger d, L, = {x; € D|f(x;) > I}
to find connected components
o fori#je€L,
if f(tx; + (1 — t)x;) > I for t € [0,1]
then k(i) = k(j)

confidence intervals possile by resampling
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Chaudhuri-Dasgupta Algorithm

d = dimancion

o Uses k-nearest neighbor graphs (filtration) X ekd
@ Parameters k (nearest neigbhors) and a € [1,2] ln

o for(r> 95 Gr = (V;, E;) with 5 =C;OV4\;J»‘QV\CZ

o x; € V, iff distance to k-nn of x; < rd— .
o (xi,x;) € E iff ||xi — xj|| < ar 2=SJZJPQMON

Consistency Theorem For any ¢ (separation parameter) and § (confidence), a € [v/2,2] (graph

density), if k = Clog (1/5)dl°g"
for any two clusters C, C’ in cluster tree, there exists a Ievel>\so that CN'D, C' N D are clusters

at level r

< X(k'i.) % h&l‘d &dﬁ <[\
d sup 6o ow B N SOVLYRL )

B3

(fesy—
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Methods based on non-parametric density estimation

The K-nn density estimator,

The K-nn density estimator
@ Let B/(x) be the (closed) ball of radius r centered at x
o If |B/(x") N D| = k then p(x') = r"Ln% is an estimate of the density at x

o wy =7"2/T(n/2 + 1) is the volume of the unit ball in R”
e intuitively, the ball of radius r contains k/n probability mass
o Note that the density p is not required to integrate to 1

I
“X—X@“" 129 -

\Bx(rx) (\%\’4‘
P (,%x(r)&)) - _‘Q_L/,Vl—)—-——' K

d
Vol (By(m)) M “a
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@ Introduced with no proof, but widely used. Implicitly based on the K-nn estimator
@ Parameters r radius, m minimum number points - —hfeﬁrf’lbw
o Definitions core Q = {x' €D, with B (x) ND| > m} W = .
@ border B ={x' € D\ Q, so that x' € B-(¥), ¥ € Q} h= vedius
o outliers (noise))? =D\ (QUB)

¢

{ e = 'F(‘&‘,\ k‘lé,u

G E T

outliers # z‘;.vdcr ‘ E C J X{(\fb 6 &
fas o Wy i B L0 i
\P= )
A QY
@ Algorithm idea Q— N@%Whoo& "T‘ \"4’\1

o Construct directed graph G with edges (i, j) where x' € Q,j € B.(x')

@ The graph edges between core points are undirected /symmetric, the other are from core to
border

o Clusters are determined by the connected components of the graph restricted to Q.

@ The border points are assigned to a cluster containing xJ so that x' € B,(xj), x/ € Q Note
that this assignment is not unique!

K.

o Heuristic algorithm estimates r, m
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Methods based on non-parametric density estimation

Consistency Theorem For any e (separation parameter) and § (confidence), a € [v/2, 2] (graph density), if
dl

k = Clog?(1/5) 425"

for any two clusters C, C’ in cluster tree, there exists a level r so that C 0D, C' N D are clusters at level r

o r depends on A ="bridge" between C, C’ (and o > 0 “tube” width)

k .
rdwd/\ = — +...confidence term
n

it follows that the needed sample size n at level A

d d
n=0 (Ae2(a/z)dwd o Ae?(a/z)dwd)

this sample complexity n is almost tight
for o < v/2 sample complexity is exponential in d

o New results [Kent, B. P., Rinaldo, A. and Verstynen, T. 2013]

@ Remark: algorithm(s) can be applied in any metric space

Marina Meila (UW) CSE 547 /STAT 548 Winter 2022



