Lecture 7

Hierarchical Comparing Obusterings · OH Today 4-5pm PDL B-321

. Choose a Mothall from POLL

· L3 - NN posted

· HW2

Lecture II – Clustering – Part III: Hierarchical clustering. Comparing clusterings

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

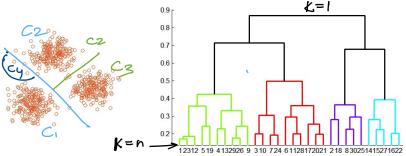
CSE 547/STAT 548 Winter 2022

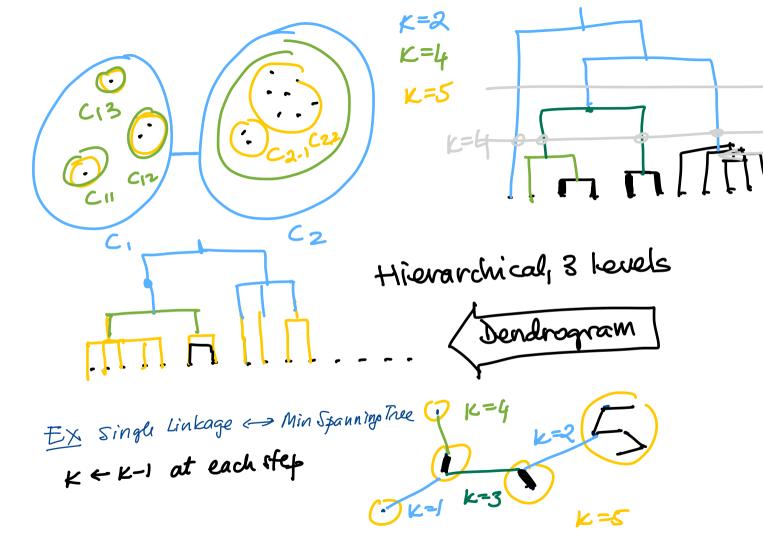
Hierarchical Methods of Clustering

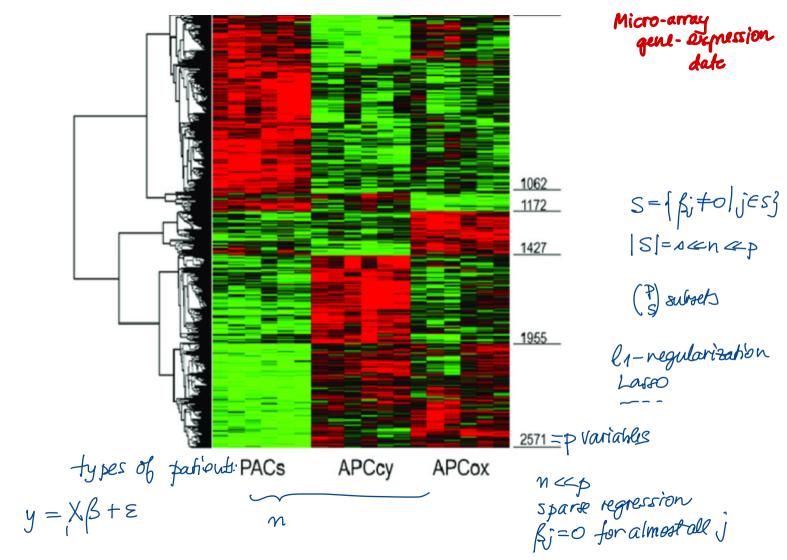
Agglomerative (bottom up):

(merge)

- Initially, each point is a cluster
- Repeatedly combine the two "nearest" clusters into one
- Divisive (top down):
 - Start with one cluster and recursively split it

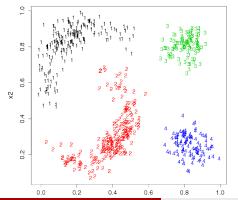




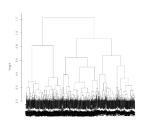


What is hierarchical clustering?

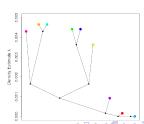
- Clusters have cluster structure
- Represented by
 - Dendrogram Single linkage Cluster Tree
 - (only from KDE)



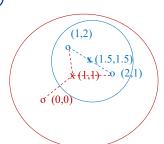
Dendrogram



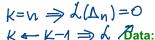
Cluster Tree



Example: Hierarchical clustering

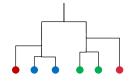


merge C and C so that $d(\Delta) - L(\Delta)$ = min GC



o ... data point

x ... centroid



Hierarchical clustering – Overview

(Dendrograms)

- Agglomerative (bottom up)
 - Single linkage
 - based on Minimum Spanning Tree
 - $\mathcal{O}(n^2 \log n)$
 - sensitive to outliers
 - Heuristics average linkage
 - Agglomerative K-means
 - Loss $\mathcal{L}(\Delta_K) = 0$ for K = n
 - When $K \leftarrow K 1$ (two clusters merged), \mathcal{L} increases
 - ullet For $K=n,n-1,\ldots 2$, iteratively merge the 2 clusters that minimize increase of ${\cal L}$
 - $\mathcal{O}(n^3)$ too expensive for big data
- Divisive (down)
 - Recursively split \mathcal{D} into K=2 clusters
 - almost any clustering algorithm (e.g. K-means, min diameter)
 - notable example Spectral clustering (later) down to some K
 - Advantages
 - most important splits are first
 - · can stop after only a few splits

Cluster tree

- λ-tree Defined by the level sets of the KDE
- α -tree Defined by the number of points in r-ball around x_i
 - i.e. by level sets of the nearest neighbor density estimator
 - more robust [Yen-Chi Chen "Generalized cluster tree and singular measures", 2019]

Dasgupta Cost function for cluster free

Requirements for a distance

Distances between A, A'

Depend on the application

dusterings of XIII

- Applies to any two partitions of the same data set
- Makes no assumptions about how the clusterings are obtained
- Values of the distance between two pairs of clusterings comparable under the weakest possible assumptions
- Metric (triangle inequality) desirable
- understandable, interpretable

How Humber A. A.?

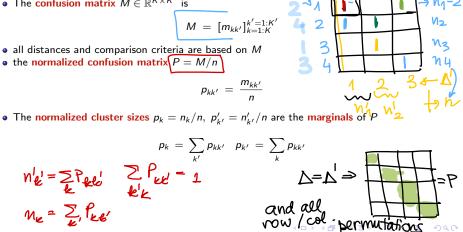
The confusion matrix

- Let $\Delta = \{C_{1:K}\}, \ \Delta' = \{C'_{1:K'}\}$
- Define $n_k = |C_k|, \ n'_{k'} = |\hat{C}_{k'}^{(r)}|$
- $\bullet \ \underline{m}_{kk'} = |C_k \cap C'_{k'}|, \ k = 1 : K, k' = 1 : K'$
- note: $\sum_{k} m_{kk'} \stackrel{..}{=} n'_{k'}, \sum_{k'} m_{kk'} = n_{k}, \sum_{k'} m_{kk'} = n$
- The confusion matrix $M \in \mathbb{R}^{K \times K'}$ is

$$M = [m_{kk'}]_{k=1:K'}^{k'=1:K'}$$

- all distances and comparison criteria are based on M
- the normalized confusion matrix P = M/n

$$p_{kk'} = \frac{m_{kk'}}{n}$$



$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k} p_{kk'}$$

$$n_{k'}^{l} = \sum_{k} p_{kk'} \quad \sum_{k'} p_{kk'} = \sum_{k'} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k'} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k'} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k'} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k'} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k'} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k'} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k'} p_{kk'}$$

$$p_{k} = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_{k'} p_{k'} \quad p_{k'} =$$

Matrix Representations

- ullet matrix reprentations for Δ
 - unnormalized (redundant) representation

$$ilde{X}_{ik} \ = \ \left\{ egin{array}{ll} 1 & i \in C_k \ 0 & i
ot\in C_k \end{array}
ight. \quad ext{for } i=1:n,k=1:K \ \end{array}
ight.$$

normalized (redundant) representation

$$X_{ik} = \left\{ egin{array}{ll} 1/\sqrt{|C_k|} & i \in C_k \ i
ot\in C_k \end{array}
ight. ext{ for } i=1:n,k=1:K \end{array}$$

therefore $X_k^T X_{k'} = \delta(k, k')$, X orthogonal matrix $X_k = \text{column } k \text{ of } X$

- normalized non-redundant reprentation
 - X_K is determined by $X_{1:K-1}$
 - hence we can use $Y \in \mathbb{R}^{n \times (K-1)}$ orthogonal representation
 - intuition: Y represents a subspace (is an orthogonal basis)
 - ullet K centers in \mathbb{R}^d , $d \geq K$ determine a K-1 dimesional subspace plus a translation

The Misclassification Error (ME) distance

• Define the Misclassification Error (ME) distance d_{ME}

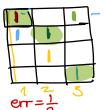
$$d_{ME} = 1 - \max_{\pi} \sum_{k=1}^{K} p_{k,\pi(k)} \quad \pi \in \{\text{all } K\text{-permutations}\}, \quad K \leq K' \text{w.l.o.g}$$
• Interpretation: treat the clusterings as classifications, then minimize the classification error

- over all possible label matchings
- Or: nd_{ME} is the Hamming distance between the vectors of labels, minimized over all possible label matchings
- can be computed in polynomial time by Max bipartite matching algorithm (also known as Hungarian algorithm)
- Is a metric: symmetric, > 0, triangle inequality

$$\mathit{d_{ME}}(\Delta_1, \Delta_2) + \mathit{d_{ME}}(\Delta_1, \Delta_3) \geq \mathit{d_{ME}}(\Delta_2, \Delta_3)$$

- easy to understand (very popular in computer science)
- $d_{ME} \leq 1 1/K$
- bad: if clusterings not similar, or K large, d_{ME} is coarse/indiscriminative
- recommended: for small K

$$d_{MF} = \frac{1}{2}$$



The Variation of Information (VI) distance Clusterings as random variables

- \bullet Imagine points in ${\cal D}$ are picked randomly, with equal probabilities
- Then k(i), k'(j) are random variables with $Pr[k] = p_k, Pr[k, k'] = p_{kk'}$

H(D) = - S pr m Pr quested see le labelin D

= and penperaty see le queste queste queste see much into?

H(D' D) = - Z Pr Z Pre lu Pelle

H(KIA) =

VI (A, K)=H (A|K)+H(K|A)

CSE 547/STAT 548 Winter 2022

Incursion in information theory I

- Entropy of a random variable/clustering $H_{\Delta} = -\sum_k p_k \ln p_k$
- $0 \le H_{\Delta} \le \ln K$
- Measures uncertainty in a distribution (amount of randomness)
- Joint entropy of two clusterings

$$H_{\Delta,\Delta'} = -\sum_{k,k'} p_{kk'} \ln p_{kk'}$$

- $H_{\Delta',\Delta} \leq H_{\Delta} + H_{\Delta'}$ with equality when the two random variables are independent
- Conditional entropy of Δ' given Δ

$$H_{\Delta'|\Delta} = -\sum_{k} p_k \sum_{k'} \frac{p_{kk'}}{p_k} \ln \frac{p_{kk'}}{p_k}$$

- Measures the expected uncertainty about k' when k is known
- $H_{\Delta'|\Delta} \leq H_{\Delta'}$ with equality when the two random variables are independent
- Mutual information between two clusterings (or random variables)

$$I_{\Delta,\Delta} = H_{\Delta} + H_{\Delta'} - H_{\Delta',\Delta}$$
$$= H_{\Delta'} - H_{\Delta'|\Delta}$$

- Measures the amount of information of one r.v. about the other
- $I_{\Delta,\Delta} \geq 0$, symmetric. Equality iff r.v.'s independent

4□ ト 4回 ト 4 重 ト 4 重 ト 重 の 9 (*)

The VI distance

Define the Variation of Information (VI) distance

$$\begin{array}{rcl} d_{VI}(\Delta, \Delta') & = & H_{\Delta} + H_{\Delta'} - 2I_{\Delta', \Delta} \\ & = & H_{\Delta|\Delta'} + H_{\Delta'|\Delta} \end{array}$$

- Interpretation: d_{VI} is the sum of information gained and information lost when labels are switched from k() to k'()
- d_{VI} symmetric, ≥ 0
- d_{VI} obeys triangle inequality (is a metric)

Other properties

Upper bound

$$d_{VI} \le 2 \ln K_{max}$$
 if $K, K' \le K_{max} \le \sqrt{n}$ (asymptotically attained)

- $d_{VI} \leq \ln n$ over all partitions (attained)
- Unbounded! and grows fast for small K

Other criteria and desirable properties

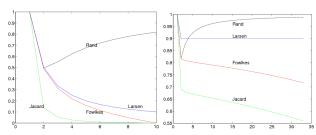
- Comparing clustering by indices of similarity $i(\Delta, \Delta')$
 - from statistics (Rand, adjusted Rand, Jaccard, Fowlkes-Mallows ...)
 - Normalized Mutual Information
 - range=[0,1], with $i(\Delta, \Delta') = 1$ for $\Delta = \Delta'$
 - the properties of these indices not so good
 - ullet any index can be transformed into a "distance" by $d(\Delta,\Delta')=1-i(\Delta,\Delta')$
- Other desirable properties of indices and distances between clusterings
 - n-invariance
 - locality
 - convex additivity

Participation Ishan Sinha Haing Zong Tony beny Andy Standin Thinas Lilly Ayush Mall Kayode OKe Hongyn Mu odin Zhang Vikram Barsi; Nikului Morokhortch

Rand, Jaccard and Fowlkes-Mallows

- Define $N_{11}=\#$ pairs which are together in both clusterings, $N_{12}=\#$ pairs together in Δ , separated in Δ' , N_{21} (conversely), $N_{22}=\#$ number pairs separated in both clusterings
- Rand index = $\frac{N_{11}+N_{22}}{\#pairs}$
- Jaccard index = $\frac{N_{11}}{\# pairs}$
- Fowlkes-Mallows = $Precision \times Recall$
- all vary strongly with K. Thereforek, Adjusted indices used mostly

$$adj(i) = \frac{i - \overline{i}}{\max(i) - \overline{i}}$$



Normalized Mutual Information (NMI)

$$i_{NMI}(\Delta, \Delta') = \frac{I_{\Delta', \Delta}}{H_{\Delta} + H_{\Delta'}}$$
 (1)

- Takes values between [0,1]
- No probabilistic interpretaion
- Variant $\frac{I_{\Delta',\Delta}}{H_{\Delta,\Delta'}}$