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Reading MMDS Ch.: 3. Finding similar items HTF Ch.:, Murphy Ch.: Reading: Lecture 16 notes
by Moses Charikar, section 3.2; optionally Cormen, Leiserson, Rivest, Stein “Introduction to
Algorithms”, chapter on hashing.
Thanks to mmds.com (Leskovec, Rajaraman and Ullman) and randorithms.com (Ben Coleman)
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Motivation – finding similar items

The problem: finding neighbors in high dimensions

Given D of size n in Rd , and given a query point x find the neighbors of x in D

here: all neighbors in radius r

sometimes the k nearest-neighbors
sometimes just 1 neighbor

query point can be in D, e.g. in clustering, dimension reduction, or not (e.g. retrieval, image
completion)
n ⌧ 106 and d > 102

Brute force (suppose we need neighbors of all xi 2 D)

compute time O(n2d) – Too large!

Can we do it exactly in subquadratic time? Probably NO
[if the SETH (Strong Exponential Time Conjecture) holds]

Rephrased problem: find approximate nearest neighbors
e.g. if x has neighbor x0 2 D at distance r , return an x

00 2 D at distance  cr

with c > 1 some constant, and w.h.p.1, usually measured by a confidence �
we measure performance of algorithm as function of (c, r , �)

1with high probability
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Distance functions

Distance and similarity functions

Distances
Euclidean x , x 0 2 Rd , dEuclid (x , x 0) = kx � x

0
k =

p
xT x + (x 0)T x 0 � 2xT x 0

L1 (Manhattan) x , x 0 2 Rd
dL1(x , x 0) = kx � x

0
k1

Hamming x , x 0 2 {0, 1}d dH(x , x 0) = x
T
x + (x 0)T x 0 � 2xT x 0 = #x +#x

0
� 2#(x \ x

0)

Similarities

cosine x , x 0 2 Rd or {0, 1}d cos(x , x 0) =
x
T
x
0

p
(xT x)((x 0)T x 0)

Jaccard x , x 0 2 {0, 1}d J(x , x 0) =
#(x \ x

0)

#(x [ x 0)
=

x
T
x
0

xT x + (x 0)T x 0 � xT x 0

Note that if x , x 0 2 {0, 1}d they can be seen as indicator functions for subsets of 1 : n.
Hence x

T
x
0 = #(x \ x

0) represents the cardinality of the intersection of sets given by x , x 0

All distances above are metrics.
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Locality Sensitive Hashing Hash functions and hash tables

Hash functions and hash codes

Let the data space be Rd , and assume some fixed probability measure on this space.

A family of hash functions is a set H = {h : Rd
! {0, 1} } with the following properties

1 For each h, Pr [h(x) = 1] ⇡ 1
2

2 The binary random variables defined by the functions in H are mutually independent. (Or, if H is
not finite, a “not too large” random sample of such random variables is mutually independent.)

Let h1:k be a mutually independent subset of H. We call

g(x) = [h1(x) h2(x) . . . hk (x)] 2 {0, 1}k (1)

the hash code of x .
Note that the codes g(x) are (approximately) uniformly distributed; the probability of any
g 2 {0, 1}k is about 1

2k
.

Useful hash functions must be fast to compute.
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Locality Sensitive Hashing Hash functions and hash tables

Hash tables

A hash table T is a data structure in which points in Rd can be stored in such a way that
1 All points with the same code g are in the same bin denoted by Tg . The table need not use space

for empty bins.
2 Given any value g 2 {0, 1}k , we can obtain a point in Tg or find if Tg = ; in constant time

(independent of the number of points n stored in T ).
Some versions of hash tables return all points in Tg , e.g., as a list, in constant time.

3 It is usually assumed that storing a point x with given code g(x) in a hash table is also constant time.

Hence, using a hash table to store an x or to retrieve something, involves computing k hash
functions, then a constant-time access to T .
When x

0
6= x and g(x 0) = g(x) we call this a collision. In some applications (not of interest

to us), collisions are to be avoided.
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Locality Sensitive Hashing What is Locality Sensitive Hashing

Hashing vs. Locality Sensitive Hashing (LSH)

by Ben Coleman randorithms.com
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Locality Sensitive Hashing What is Locality Sensitive Hashing

Locality Sensitive Hash Functions and Codes

A hash function h is locality sensitive i↵ for any x , x 0 2 Rd

Pr [h(x) = h(x 0)] � p1 when ||x � x
0
||  r (2)

Pr [h(x) = h(x 0)]  p2 when ||x � x
0
|| � cr (3)

with p1, p2, r and c > 1 fixed parameters (of the family H) and p1 > p2.
W.l.o.g., we set p1 = p

⇢
2 for some ⇢ < 1.

by Ben Coleman randorithms.com
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Locality Sensitive Hashing What is Locality Sensitive Hashing

LSH functions

A locality sensitive h makes a weak distinction between points that are close in space vs.
points that are far away. A hash code g from locality sensitive hash functions sharpens this
distinction, in the sense that the probability of far away points colliding can be made
arbitrarily small.

pbad = Pr [g(x) = g(x 0) | ||x � x
0
|| > cr ]  p

k

2 (4)

Assume x is not in T ; for any x
0
2 D which is far from x ,the probability that x 0 collides with

x is  pbad .
We construct T so that pbad 

1
n
for n the sample size. For this we need Exercise (in

Homework 1)

k =
ln n

� ln p2
) pbad 

1

n
(5)

Suppose x
0
2 T is “close” to x . What is the probability that g(x 0) = g(x)?

pgood = p
k

1 = p
⇢k
2 =

1

n⇢
(6)

This is the probability that the bin Tg(x) contains x
0.

h depends on the distance d

h and g sometimes depend on r
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Locality Sensitive Hashing LSH functions from random projections

How to find good hash functions?

We need large families of h functions
that are easy to generate randomly
and fast to compute for a given x

Generic method to obtain them: random projections
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Locality Sensitive Hashing LSH functions from random projections

LSH function for Hamming distance

H = {hj = bitj (x), j = 1 : d}
a random h 2 H samples a random bit of x
Collision probability

p1(x , x
0) = 1�

dH(x , x 0)

d
(7)

by Ben Coleman

randorithms.com
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Locality Sensitive Hashing LSH functions from random projections

LSH function for Euclidean and L1 distance

project x on a random line, round to
multiples of r

hw,b(x) = b
w

T
x + b

r
c (8)

If w ⇠ Normal(0, Id ), hash function for
Euclidean distance
If w ⇠ Cauchy(0, 1)d , hash function for L1
distance
Collision probability (p = 2 for Normal,
p = 1 for Cauchy)

p1(x , x
0) = deterministic function ofkx�x

0
kp

(9)
Hash function space Hr is infinite, and
depends on r

by Ben Coleman

randorithms.com
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