€ 54%
" oo 45 h 5

decture &

NIV in high dimensions
LS+ .
’Prosa.é\' . ']mk\\sksl

R



Lecture Ill Finding Nearest Neighbors in High Dimensions

Marina Meila
mmp@stat.washington.edu

Department of Statistics
University of Washington

CSE 547/STAT 548
Spring 2025

11l NN in High Dimensions CSE 547/STAT 548 Spring 2025 1/



@ Motivation — finding similar items L

@ Distance functions €=

© Locality Sensitive Hashing
@ Hash functions and hash tables
@ What is Locality Sensitive Hashing
o LSH functions from random projections
o Approximate r-neighbor retrival by LSH

@ K-D trees, Ball trees etc. @
© Big data and the curse of dimensionality

© Finding similar documents
@ Min-Hash

Reading MMDS Ch.: 3. Finding similar items HTF Ch.;, Murphy Ch.: Reading: Lecture 16 notes
by Moses Charikar, section 3.2; optionally Cormen, Leiserson, Rivest, Stein “Introduction to

Algorithms”, chapter on hashing.
Thanks to mmds.com (Leskovec, Rajaraman and Ullman) and randorithms.com (Ben Coleman)
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Motivation — finding similar items

[Hays and Efros, SIGGRAPH 2007]

Scene Completion Problem
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) [Hays and Efros, SIGGRAPH 2007]
Scene Completion Problem
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Motivation — finding similar items

[Hays and Efros, SIGGRAPH 2007]

Scene Completion Problem

10 nearest nelihbors from a collection of 20,000 ima ages
Marina Meila (UW) 111 NN in High Dimensions CSE 547/STAT 548 pnng 2025 5/



Motivation — finding similar items

[Hays and Efros, SIGGRAPH 2007]

Scene Completion Problem
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Motivation — finding similar items

A Common Metaphor

Many problems can be expressed as
finding “similar” sets:
Find near-neighbors in high-dimensional space
Examples:
Pages with similar words
For duplicate detection, classification by topic
Customers who purchased similar products
Products with similar customer sets

Images with similar features S
Users who visited similar websites
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Motivation — finding similar items

The problem: finding neighbors in high dimensions

o Given D of size n in RY, and given a query point x find the neighbors of x in D
o here: all neighbors in radius r
e sometimes the k nearest-neighbors
o sometimes just 1 neighbor

@ query point can be in D, e.g. in clustering, dimension reduction, or not (e.g. retrieval, image
completion) -

e n < 10° and d > 102 .
@ Brute force (suppose we need neighbors of all x; € D) -
o compute time O(n’d) — Too large! . : N
o Can we do it exactly in subquadratic time? Probably NO . o
o [if the SETH (Strong Exponential Time Conjecture) holds] "2 .
@ Rephrased problem: find approximate nearest neighbors & -

o e.g. if x has neighbor x’ € D at distance r, return an x’’ € D at distance < cr
o with ¢ > 1 some constant, and w.h.p.}, usually measured by a confidence &
o we measure performance of algorithm as function of (c, r, §)
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Lwith high probability
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Distance functions

Distance and similarity functions : :
Distances :; d‘“—l
o Euclidean x,x’ € RY, (x5 x") = |Ix = x| = /XTx+ (x)Tx" —2xTx/
o L1 (Manhattan) x,x’ € R d;;(x,x) = ||x — x|z

o Hamming x,x’ € {0,1}9 dy(x,x') = xTx 4+ (x)Tx" = 2xTx" = #x + #x' — 2#(x N x’)

Similarities
xTx!
(xT)(()Tx")
g _ #(xnx) xTx! _
e Jaccard x,x’ € {0,1}9 J(x,x') = F X)) XTx )T — X

o Note that if x,x’ € {0,1}9 they can be seen as indicator functions for subsets of 1 : n.
Hence xTx’ = #(x N x') represents the cardinality of the intersection of sets given by x, x’
o All distances above are metrics.

x,%ef XE {0,\3’: \ Vel ; Y=}

o cosine x,x’ € RY or {0,1}9 cos(x, x") =

e X (Wl= anzirz -
T I Ul oy = A=J6x)
Y ") \{aeal 3 3
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Hash functions and hash tables
.~ N N
Hash functions and hash codes Locad(’rj Sensthve —i*\cl&hkvg

Let the data space be RY, and assume some fixed probability measure on this space.

o A family of hash functions is a set H = {h: R? — {0,1} } with the following properties
@ For each h, Prlh(x) =1] ~ 1
@ The binary random variables defined by the functions in # are mutually independent. (Or, if H is
not finite, a “not too large” random sample of such random variables is mutually independent.)
o Let hy., be a mutually independent subset of H. We call

&ho, \}
s g(x) = [m(x) ha(x) ... h(x)] € {0, 1} \J@q
the hash code of x. ‘8\'0— ‘U‘\Jlﬂ \FL"L

o Note that the codes g(x) are (approximately) uniformly distributed; the probability of any
g € {0,1}* is about 2%(
@ Useful hash functions must be fast to compute.

Wik conslard acces Fime
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Locality Sensitive Hashing Hash functions and hash tables
Hash tables

o A hash table 7 is a data structure in which points in R? can be stored in such a way that
@ All points with the same code g are in the same bin denoted by 7,. The table need not use space
for empty bins.
@ Given any value g € {0,1}*, we can obtain a point in 7 or find if Ty = 0 in constant time
(independent of the number of points n stored in 7).
Some versions of hash tables return all points in T, e.g., as a list, in constant time.
@ It is usually assumed that storing a point x with given code g(x) in a hash table is also constant time.
@ Hence, using a hash table to store an x or to retrieve something, involves computing k hash
functions, then a constant-time access to 7.
o When x’ # x and g(x’) = g(x) we call this a collision. In some applications (not of interest
to us), collisions are to be avoided.
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What is Locality Sensitve Hashing
Hashing vs. Locality Sensitive Hashing (LSH)

Elements
4 H(x)
e o 1y
®e -
®e
0® o o
°
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Locality Sensitive Hash Functions and Codes

g~ -y

@ A hash function h is locality sensitive iff for any x, x’ € R?
Pr[h(x) = h(x")] > p1 when ||x —x'|| < r (2)
Prlh(x) = h(x")] < p> when ||x — x|| > cr (3)

with p1, p2, r and ¢ > 1 fixed parameters (of the family #) and p1 > p2.
e W.lo.g., we se‘ p1 = pg!for some p < 1.

\ ° .: Query:.so _ Vel E{(iw’“ﬂ)
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LSH functions

A locality sensitive h makes a weak distinction between points that are close in space vs.
points that are far away. A hash code g from locality sensitive hash functions sharpens this
distinction, in the sense that the probability of far away points colliding can be made
arbitrarily small.

Phad = Prlg(x) = g(x')|lIx = x'|| > cr] < pj (4)

Assume x is not in T; for any x’ € D which is far from x,the probability that x’ collides with
X is < Ppad-
We construct T so that pp,g < % for n the sample size. For this we need Exercise (in

Homework 1)

Inn 1
k = = Ppad < — (5)
—Inps n

Suppose x” € T is “close” to x. What is the probability that g(x’) = g(x)?

1

K k

Pgood = P1 = Pg = ; (6)
This is the probability that the bin Tg(x) contains x’.

h depends on the distance d
h and g sometimes depend on r
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Locality Sensitive Hashing LSH functions from random projections

How to find good hash functions?

o We need large families of h functions
that are easy to generate randomly
and fast to compute for a given x

@ Generic method to obtain them: random projections
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Locality Sensitive Hashing LSH functions from random projections

LSH function for Hamming distance

o H ={h; =bitj(x), j=1:d}

@ a random h € H samples a random bit of x
o Collision probability

dH(val)
e

;ﬁmﬂfwﬁ

pr(x,x') = 1-

X€ )\,Osﬂld
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To bit sample, randomly choose an index
This is sensitive to Hamming distance

x [1]o]o

o0[1]1]o]1
oJoJ1]o]o

1[1]o[1]
1[1]o[1]

h(x) =0 h(x)=1
hh()=0 h((y)=0

by Ben Coleman

ndorithms.com
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LSH function for Euclidean and L1 distance

@ project x on a random line, round to
multiples of r

hos0 = 222 ) e

b""&W‘f CO»'?

o If w ~ Normal(0, I5), hash function for,
Euclidean distance =~ d\rRChON (LVWW%

o If w ~ Cauchy(0,1)?, hash function for L1

distance m;h\
@ Collision probability (p = 2 for Normal,
p =1 for Cauchy)

pi(x,x") = deterministic function of||x—x||» W
(9)
@ Hash function space H, is infinite, and
depends on r ==~
A

ﬁ:/kd—?z
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