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@ Paradigms for clustering

© Parametric clustering algorithms (K given)
o Cost based / hard clustering
@ Model based / soft clustering
@ Outliers

Reading MMDS Ch.: 7.3 K-means HTF Ch.:14.3, Murphy Ch.:
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Paradigms for clustering

What is clustering? Problem and Notation

o Informal definition Clustering = Finding groups in data

o Notation D = {xi1, X2, ... Xn} a data set
n = number of data points
K = number of clusters (K << n)
A = {G,G,...,Ck} a partition of D into disjoint subsets
k(i) = the label of point i
L(A) = cost (loss) of A (to be minimized)
@ Second informal definition Clustering = given n data points, separate them into K clusters

@ Hard vs. soft clusterings

o Hard clustering A: an item belongs to only 1 cluster
. i=1:
o Soft clustering v = {Vi } o1k
vk = the degree of membership of point i to cluster k

Z’Y"" =1 foralli
k

(usually associated with a probabilistic model)
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Paradigms for clustering

10 I
or 15
8 10
7 5
6 0
5 -5
4] -10
-1
-2 -1 ] 1 2 3 -10 -5 0 5 10
s
8 -
s :!
o
. VAR e
s | o ag® .\‘f, ,".. >
8 . .
4 .o .
2%
s | ) .
8 ch
2
NI C .t s
2 — - . . . .
o
s
s |
]
o
: ; : | |
200 400 600 800 1000

CSE 547/STAT 548 Spring 2025

4/



Paradigms for clustering

Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K, shape of clusters)

o Data = vectors {x;} in R
Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric  Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]
Gaussian blurring mean shift? [hard]
o Data = similarities between pairs of points [Sj]; j=1.n, Sjj = Sji > 0 Similarity based
clustering

Graph partitioning spectral clustering [hard, K fixed, cost based]

typical cuts [hard non-parametric, cost based]
Affinity propagation  [hard/soft non-parametric]
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Paradigms for clustering

Classification vs Clustering

Classification

Clustering

Cost (or Loss) L

Expectd error

many! (probabilistic or not)

Supervised

Unsupervised

Generalization

Performance on new
data is what matters

Performance on current
data is what matters

K Known Unknown
“Goal” Prediction Exploration Lots of data to explore!
Stage Mature Still young
of field

Marina Meila )
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[ICITIRE IR SN (W Cost based / hard clustering

Parametric clustering algorithms

e Cost based

o Single linkage (min spanning tree)
o Min diameter
@ Fastest first traversal (HS initialization)

o K-medians
o K-means

o Model based (cost is derived from likelihood)
o EM algorithm
o “Computer science” /" Probably correct” algorithms
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[ICITIRE IR SN (W Cost based / hard clustering

Minimum diameter clustering

@ Cost L(A) = max, max ||x; — xj||
i,jeCy
diameter
o Mimimize the diameter of the clusters
o Optimizing this cost is NP-hard
o Algorithms
o Fastest First Traversal ? — a factor 2 approximation for the min cost

For every D, FFT produces a A so that
L% < L(A) < 2L

o rediscovered many times
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[ICITIRE IR SN (W Cost based / hard clustering

Algorithm Fastest First Traversal
Input Data D = {x;}i=1.n, number clusters K

defines centers py.x € D
(many other clustering algorithms use centers)

@ pick p1 at random from D
Q fork=2:K
i argglax distance(x;, {#1:4—1})

@ for i =1: n (assign points to centers)
k(i) = k if p is the nearest center to x;
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[ENTIRE IR SN (VI Model based / soft clustering

Model based clustering: Mixture models

Mixture in 1D

0.1

Marina Meila (UW)

The mixture density

K
Fx) = 3 meh(x)
k=1

fx(x) = the components of the mixture

o each is a density
o f called mixture of Gaussians if fy = Normal,, s,

T, = the mixing proportions,
Sp=1Km =1, m >0.
model parameters 6 = (71.x, H1:K, L1:K)
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[ENTIRE IR SN (VI Model based / soft clustering

Model based clustering: Mixture models

Mixture in 1D

0.1

Marina Meila (UW)

@ The mixture density

K
Fx) = 3 meh(x)
k=1

o fi(x) = the components of the mixture

o each is a density

o f called mixture of Gaussians if fy = Normal,, s,
@ m, = the mixing proportions,

Sp=1Km =1, m >0.
o model parameters 0 = (1., t1:k, X1:K)

The degree of membership of point i to cluster k

7y fie(x)

def
Pl e ¢ = KX
Vi [Xl k] f(X)

fori=1:nk=1:K
(1)

@ depends on x; and on the model parameters

CSE 547 /STAT 548 Spring 2025
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[ENTIRE IR SN (VI Model based / soft clustering

The Maximum Likelihood Principle

o Given data D = {xy.5} sampled i.i.d from some unknown P*
Model Py(x) depends on parameter 0
Problem: How to estimate 67

Principle: Maximum Likelihood
Likelihood(0|D) = Py(D) = TI7; Po(x;)

Often convenient to use log-likelihood /(6)

10) = InPy(x)
i=1

@ Reason: many Py are expressed with exponential functions (e.g the Normal distribution)

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025
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[ENTIRE IR SN (VI Model based / soft clustering

Criterion for clustering: Max likelihood

denote 6 = (m1.x, p1:k, X1:k) (the parameters of the mixture model)
o Define likelihood P[D|0] = ] f(xi)
Typically, we use the log likelihood

16) = [ FGa) = 3 In S mfilx) @
i=1 i=1 k

o denote OML = argmax 1(0)

OML determines a soft clustering v by (1)
a soft clustering « determines a 6 (see later)
@ Therefore we can write
Liv) = —1(6(v))
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[ENTIRE IR SN (VI Model based / soft clustering

Algorithms for model-based clustering

Maximize the (log-)likelihood w.r.t

o directly - (e.g by gradient ascent in 0)
o by the EM algorithm (very popular!)
o indirectly, w.h.p. by "computer science” algorithms

w.h.p = with high probability (over data sets)

Marina Meila (UW) CSE 547/STAT 548 Spring 2025 13,



[ENTIRE IR SN (VI Model based / soft clustering

The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)
Input Data D = {x;}i=1.n, number clusters K

tialize parameters 7. € R, p1.x € RY, 1.6 € R¥¥? at random?
terate until convergence

E step (Optimize clustering) fori=1:n, k =1: K

o T fie(x)
ki 7)(()()
M step (Optimize parameters) set [y = > 7 ; v, k =1: K (number of points in cluster k)
Mk
Tk = —, k=1:K
n
R e
Mk = e i

S i (x — ) (i — )T
Tk

pp =

® 1.k, M1:K, L1:k are the maximizers of Ic(6) in (6)
] Zk I'k =n

IZk need to be symmetric, positive definite matrices

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025
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[ENTIRE IR SN (VI Model based / soft clustering

The EM Algorithm — Motivation

o Define the indicator variables

o 1 ifieCy
Z'k*{o ifi g C ®)

denote Z = {z4 };::11:?;(

Define the complete log-likelihood

o
n K
Ic Z Zyi In Tkak X, (4)
i=1 k=1
o Elzi] = ki
@ Then
n K
E[l(6,2)] = > Elzid]lIn mi + In fi(x)] (5)
i=1 k=1

n K n K
SO> T viinme+ > 0> v Infie(xi)] (6)
k=1

i=1 i=1 k=1

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025 15,



[ENTIRE IR SN (VI Model based / soft clustering

o If 6 known, ~,; can be obtained by (1)
(Expectation)

o If y4 known, mg, uk, Xk can be obtained by separately maximizing the terms of E[/c]
(Maximization)

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025 16,



Brief analysis of EM

Q(0,7) = ZZ’Yk:'anfk (xi)

i=1 k=1

each step of EM increases Q(6,~)

Q@ converges to a local maximum

at every local maxi of Q, 6 <> ~ are fixed point
Q(0*,~*) local max for Q = /(6*) local max for /()
under certain regularity conditions § — ML ?

the E and M steps can be seen as projections ?

Exact maximization in M step is not essential.

Sufficient to increase Q.
This is called Generalized EM

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025
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[ENTIRE IR SN (VI Model based / soft clustering

Probablistic alternate projection view of EM?

o let z; = which gaussian generated i? (random variable), X = (x1.n), Z = (21:n)
o Redefine Q . -
Q(P,0) = L(9) — KL(P||P(Z|X,0)
where P(X, Z|0) = IT; 1y Plzi = k]P[xi|6«]
B(Z) is any distribution over Z,
KL(P(W)||Q(w)) = >, P(w)In % the Kullbach-Leibler divergence

Then,
o E step maxz Q & KL(P||P(Z|X, 6)
o M step maxg Q < KL(P(X|Z,6°)||P(X|0))
@ Interpretation: KL is “distance”, “shortest distance” = projection

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025
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[ENTIRE IR SN (VI Model based / soft clustering

The M step in special cases

o Note that the expressions for py, Xy =

data points x; weighted by “Ii—‘:

M step
— N7 7 T
general case Y=l %’(X/‘ — ) (xi — k)
S, =% Y < g SR ki (i — ) (i — 1) T
n
“same shape & size" clusters
2
_ 2 2 g vwillxi—pll
Zk = (Tk/d Tk «— dry
“round” clusters
K 2
_ 2 2 2oy Dopey il Ixi— el
zk—a'ld g 'lklndll

“round, same size" clusters

Exercise Prove the formulas above
o Note also that K-means is EM with X, = 02/y, o

Marina Meila (UW)
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— 0 Exercise Prove it
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More special cases ? introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes (=determinant, trace,

Model based / soft clustering

AT

e-vectors). The letters below mean: |=unitary (shape, axes), E=equal (for all k), V=unequal

@ Ell: equal volume, round shape (spherical covariance)

@ VII: varying volume, round shape (spherical covariance)

@ EEl: equal volume, equal shape, axis parallel orientation (diagonal covariance)

@ VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)

@ EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)

@ VVI: varying volume, varying shape, equal orientation (diagonal covariance)

@ EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)

@ EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)

@ VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)

@ VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)
(from ?)

Marina Meila

uw)

CSE 547 /STAT 548 Spring 2025

20,



[ENTIRE IR SN (VI Model based / soft clustering

EM versus K-means

o Alternates between cluster assignments and parameter estimation
Cluster assignments ~y,; are probabilistic
@ Cluster parametrization more flexible

15

15

o Converges to local optimum of log-likelihood
Initialization recommended by K-logK method

o Modern algorithms with guarantees (for e.g. mixtures of Gaussians)

o Random projections
o Projection on principal subspace ?
e Two step EM (=K-logK initialization + one more EM iteration)

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025
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[ENTIRE IR SN (VI Model based / soft clustering

"Computer science” algorithms for mixture models

@ Assume clusters well-separated (S)
o eg |lue — |l = Cmax(oy, o)
o with o7 = max eigenvalue(Z)

o true distribution is mixture

o of Gaussians
o of log-concave f;'s (i.e. In fi is concave function)

@ then, w.h.p. (n,K,d, C)
o we can label all data points correctly
e = we can find good estimate for 6

Even with (S) this is not an easy task in high dimensions
Because fi (k) — 0 in high dimensions (i.e there are few points from Gaussian k near p)

Marina Meila (UW) CSE 547/STAT 548 Spring 2025 22,



Other "CS" algorithms |

@ ? round, equal sized Gaussian, random projection

@ 7 arbitrary shaped Gaussian, distances

@ ? log-concave, principal subspace projection
Example Theorem (Achlioptas & McSherry, 2005) If data come from K Gaussians,
n>> K(d + log K) /T min, and

ik — pull = 4or/1/mp + 1/ + dok/ K log nK + K2

then, w.h.p. 1 —4§(d, K, n), their algorithm finds true labels
Good

o theoretical guarantees

@ no local optima
@ suggest heuritics for EM K-means

o project data on principal subspace (when d >> K)
But

@ strong assuptions: large separation (unrealistic), concentration of f;'s (or fi known), K
known
o try to find perfect solution (too ambitious)
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[ENTIRE IR SN (VI Model based / soft clustering

A fundamental result

The Johnson-Lindenstrauss Lemma For any € € (0,1] and any integer n, let d’ be a positive
integer such that d’ > 4(¢?/2 — £3/3)"1Inn. Then for any set D of n points in RY, there is a
map f : RY — R such that for all u,vevV,

(1= )lu— v < [If(u) = FWI? < (1 +e)llu — vI]® ™

Furthermore, this map can be found in randomized polynomial time.

@ note that the embedding dimension d’ does not depend on the original dimension d, but
depends on n, ¢

@ 7 show that: the mapping f is linear and that w.p. 1 — % a random projection (rescaled) has
this property

o their pl’OOf is elementary Projecting a fixed vector v on a a random subspace is the same as projecting a random vector v on a fixed
subspace. Assume v = [v{, . . . vy] with v ~ i.id. and let # = projection of v on axes 1 : d’. Then E[||7||2 = dlE[vjz] = %’E[HVHZ]. The

next step is to show that the variance of || 7| |2 is very small when d’ is sufficiently large.

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025
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A two-step EM algorithm 7

© 60 6 00O

eorem

Assumes K spherical gaussians, separatlon [|pfre — t’”e > CVdoy
Pick K = O(K In K) centers ,uk at random from the data
d .
Set o = § minj s | — 10,2, 79 = 1/K’
Run one E step and one M step = {7}, ut, ot beyi

1 1
Compute “distances” d(,ui,,ui/) = HZE%Z‘E:H

Prune all clusters with 7} < 1/4K’

Run Fastest First Traversal with distances d(ui,ui,) to select K of the remaining centers.
Set mp = 1/K.

Run one E step and one M step => {72, 2, 02}x—1:x

For any &,& > 0 if d large, n large enough, separation C > d'/4 the Two step EM algorithm
obtains centers py so that

ik — |l < |lmean(Ci™e) — ufe|| + eoxVd

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025
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[ENTIRE IR SN (VI Model based / soft clustering

Selecting K for mixture models

The BIC (Bayesian Information) Criterion

o let 6 = parameters for vk
e let #0x=number independent parameters in Ok
o e.g for mixture of Gaussians with full £4's in d dimensions

#0x = K — 1+ Kd, +Kd(d —1)/2
W—’

—\,—-/
LK “I:K Tik
o define 0
BIC(6x) = I(0k) — # nm
o Select K that maximizes BIC(0k)

selects true K for n — o0 and other technical conditions (e.g parameters in compact set)
but theoretically not justified (and overpenalizing) for finite n

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025
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BiL

Parametric clustering algorithms (K given)

Number of Clusters vs. BIC Ell (A), Vil (B), EEI (C), VEI (D),
EVI (E), VVI (F), EEE (G), EEV (H), VEV (1), VWV (J)
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(from ?7)
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[ENTIRE IR SN (VI Model based / soft clustering

Number of Clusters vs. BIC Ell (A), Vil (B), EEI (C), VEI (D),

EEV, 8 Cluster Solution
EVI (E), WVI (F), EEE (G), EEV (H), VEV (1), VWV (J)

1000

800

BiL

0 200
L 1

-200
L

—400

nurmber of clusters x1

(from ?7)
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[ENTIRE IR SN (VI Model based / soft clustering

Selecting K for hard clusterings

o based on statistical testing: the gap statistic (Tibshirani, Walther, Hastie, 2000)

o the Krzanowski-Lai (KL), 1985 statistic

o X-means ? heuristic: splits/merges clusters based on statistical tests of Gaussianity
@ Stability methods

o Empirical — prove instability
o Optimization based — prove stability

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025 29,



[ENTIRE IR SN (VI Model based / soft clustering

Empirical Stability methods for choosing K

o like bootstrap, or crossvalidation
o Idea (implemented by ?)

for each K
@ perturb data D — D’
@ cluster D' — Aj
© compare Ak, Aj. Are they similar?
If yes, we say Ak is stable to perturbations

Fundamental assumption If Ay is stable to perturbations then K is the correct number of clusters

@ these methods are supported by experiments (not extensive)
o not directly supported by theory ...see ? for a summary of the area

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025
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The gap statistic

Idea

o for some cost L compare L(Ag) with its expected value under a null distribution
o choose null distribution to have no clusters

o Gaussian (fit to data)
@ uniform with convex support
@ uniform over Ky principal components of data

o null value = EPO[LK,,,] the expected value of the cost of clustering n points from Py into K clusters
o the gap
g(K) = EpylLk,n] — L(Ak) = Lk — L(Ak)

@ choose K* corresponding to the largest gap
@ nice: it can also indicate that data has no clusters

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025 31,



[ENTIRE IR SN (VI Model based / soft clustering

Practicalities

° L‘B( = EPO[LK,,,] can rarely be computed in closed form
(when Py very simple)
@ otherwise, estimate L% be Monte-Carlo sampling
i.e generate B samples from Py and cluster them
o if sampling, variance s,2< of estimate l:% must be considered
s,2< is also estimated from the samples
o selection rule: K* = smallest K such that g(K) > g(K + 1) — sk41
o favored LY(A) = 3, ﬁ 2iec IIxi— 1i||> = sum of cluster variances

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025 32,



[ENTIRE IR SN (VI Model based / soft clustering

The KL statistic

o Heuristic
o define wx = Kz/dLV(AK) (lower is better)
@ a good K is indicated by "large” jump between K — 1 and K

@ they propose
diff(K) = wkx_1 — wg

choose K that maximixes relative jump ‘#K’«?l)’

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025 33,



[ENTIRE IR SN (VI Model based / soft clustering

Stability methods for choosing K

o like bootstrap, or crossvalidation
o Idea (implemented by ?)

for each K
@ perturb data D — D’
@ cluster D' — Aj
© compare Ak, Aj. Are they similar?
If yes, we say Ak is stable to perturbations

Fundamental assumption If Ay is stable to perturbations then K is the correct number of clusters

@ these methods are supported by experiments (not extensive)
@ not YET supported by theory ...see ? for a summary of the area
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[ENTIRE IR SN (VI Model based / soft clustering

A stability based method for model-based clustering

o The algorithm of ?
@ divide data into 2 halves Dy, D; at random
@ cluster (by EM) D1 — Aq, 6;
@ cluster (by EM) Dy — Ao, 0,
@ cluster Dy using 6 — A}
@ compare Ay, A}
@ repeat B times and average the results
o repeat for each K
o select K where Ay, A are closest on average (or most times)

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025
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(from 7)

a

Parametric clustering algorithms (K given)

Data set: uniform
stability (not normalized)

Model based / soft clustering

Data set: four Gaussians
stability [not normalized)

8 1
08 o~ 0.5 — ]
A — .. —
0a e 0 _\/
“0 5 10 15 0 5 10 15
Stabilﬂ'y on reference distribution Stabl\\l‘y on reference distribution
8 8
- "
oa——" oa——"
“0 5 10 T 5 10 15
stability (normalized) stability (normalized)
15 2
1 T ——— — —\\/_,_ —
5
0% 5 10 s % 5 10 15

Fig. 2.1 Normalized stability scores. Left plots: Data points from a uniform density on
[0,1]2. Right plots: Data points from a mixture of four well-separated Gaussians in E?. The

first row always shows the unnormalized instability Instab for K = 2,...,15. The second row
shows the instability Instabporm obtained on a reference distribution (uniform distribution).

The third row shows the normalized stability Imnnrm.

Meila (UW)
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Parametric clustering algorithms (K given) OIS

Clustering with outliers

o What are outliers?
@ let p = proportion of outliers (e.g 5%-10%)
@ Remedies

o mixture model: introduce a K + 1-th cluster with large (fixed) k1, bound X4 away from 0
o K-means and EM

@ robust means and variances

e.g eliminate smallest and largest pny /2 samples in mean computation (trimmed mean)
@ K-medians ?
@ replace Gaussian with a heavier-tailed distribution (e.g. Laplace)

o single-linkage: do not count clusters with < r points

Is K meaningful when outliers present?
o alternative: non-parametric clustering

Marina Meila (UW) CSE 547 /STAT 548 Spring 2025
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