Lecture II - Clustering - Part II: Non-parametric clustering

Marina Meilă mmp@stat.washington.edu

Department of Statistics University of Washington

CSE 547/STAT 548 Spring 2025 Paradigms for clustering

Methods based on non-parametric density estimation

3 Model-based: Dirichlet process mixture models

What is clustering? Problem and Notation

- Informal definition Clustering = Finding groups in data
- Notation $= \{x_1, x_2, \dots x_n\}$ a data set $n = \text{number of } \frac{\text{data points}}{\text{data points}}$

K = number of clusters (K << n) $\Delta = \{C_1, C_2, \dots, C_K\}$ a partition of $\mathcal D$ into disjoint subsets

k(i) = the label of point i

 $L(\Delta) = \cos(\log \Delta)$ (to be minimized)

- Second informal definition Clustering = given n data points, separate them into K clusters Hard vs. soft clusterings
- Hard clustering Δ: an item belongs to only 1 cluster
 - Soft clustering $\gamma = \{\gamma_{ki}\}_{k=1:K}^{i=1:n}$

 γ_{ki} = the degree of membership of point i to cluster k

$$\sum_{k} \gamma_{ki} = 1 \text{ for all } i$$

(usually associated with a probabilistic model)

Clustering Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints (about K, shape of clusters)

• Data = vectors $\{x_i\}$ in \mathbb{R}^d

Parametric Cost based [hard] Model based [soft] (K known)

Non-parametric Dirichlet process mixtures [soft] (K determined Information bottleneck [soft] by algorithm) Modes of distribution [hard]

Gaussian blurring mean shift? [hard] Level sets of distribution [hard] • Data = similarities between pairs of points $[S_{ii}]_{i,j=1:n}$, $S_{ii} = S_{ii} \ge 0$ Similarity based

clustering

Graph partitioning spectral clustering [hard, K fixed, cost based]

typical cuts [hard non-parametric, cost based]

[hard/soft non-parametric] Affinity propagation

Classification vs Clustering

	Classification	Clustering
Cost (or Loss) L	Expectd error	many! (probabilistic or not)
	Supervised	Unsupervised
Generalization	Performance on new	Performance on current
	data is what matters	data is what matters
K	Known	Unknown
"Goal"	Prediction	Exploration Lots of data to explore!
Stage of field	Mature	Still young
or rieia		

Methods based on non-parametric density estimation

Idea The clusters are the isolated peaks in the (empirical) data density

- group points by the peak they are under
- some outliers possible
- K = 1 possible(no clusters)
- shape and number of clusters K determined by algorithm
- structural parameters
 - smoothness of the density estimate
 - what is a peak

Algorithms

- peak finding algorithms Mean-shift algorithms
- level sets based algorithms
 - Nugent-Stuetzle, Support Vector clustering
- Information Bottleneck ?

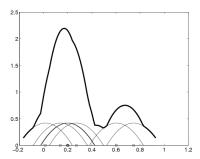
Kernel density estimation

Input

- ullet data $\mathcal{D}\subseteq\mathbb{R}^d$
- Kernel function K(z)
- parameter kernel width h (is a smoothness parameter)

output f(x) a probability density over \mathbb{R}^d

$$f(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{x-x_i}{h}\right)$$



- f is sum of Gaussians centered on each x_i
- f is smoother (less variation) if h larger
- caveat: dimension d can't be too large

The kernel function

- ullet Example $K(z)=rac{1}{(2\pi)^{d/2}}\mathrm{e}^{-||z||^2/2},\;z\in\mathbb{R}^d$ is the Gaussian kernel
- In general
 - K() should represent a density on \mathbb{R}^d , i.e $K(z) \geq 0$ for all z and $\int K(z)dz = 1$
 - K() symmetric around 0, decreasing with ||z||
- In our case, K must be differentiable

Mean shift algorithms

Idea find points with $\nabla f(x) = 0$

Assume $K(z) = e^{-||z||^2/2}/\sqrt{2\pi}$ Gaussian kernel

$$\nabla f(\mathbf{x}) = -\frac{1}{nh^d} \sum_{i=1}^n K(\frac{\mathbf{x} - \mathbf{x}_i}{h})(\mathbf{x} - \mathbf{x}_i)/h$$

Local max of f is solution of implicit equation

$$x = \frac{\sum_{i=1}^{n} x_i K(\frac{x - x_i}{h})}{\sum_{i=1}^{n} K(\frac{x - x_i}{h})}$$
the mean shiftm(x)

Algorithm Simple Mean Shift

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, kernel K(z), h

- **1** for $i = 1 : \vec{n}$
 - $0 x \leftarrow x_i$
 - ② iterate $x \leftarrow m(x)$ until convergence to m_i
- 2 group points with same m_i in a cluster

Remarks

- ullet mean shift iteration guaranteed to converge to a max of f
- computationally expensive
- a faster variant...

Algorithm Mean Shift (Comaniciu-Meer)

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, kernel K(z), h

- select q points $\{x_j\}_{j=1:q} = \mathcal{D}_q \subseteq \mathcal{D}$ that cover the data well
- - $0 x \leftarrow x_j$
 - ② iterate $x \leftarrow m(x)$ until convergence to m_j
- lacktriangledown group points in \mathcal{D}_q with same m_j in a cluster
- lacktriangledown assign points in $\mathcal{D}\setminus\mathcal{D}_q$ to the clusters by the nearest-neighbor method

$$k(i) = k(\operatorname*{argmin}_{j \in \mathcal{D}_q} ||x_i - x_j||)$$

[Supplement: Gaussian blurring mean shift]

Idea

- like Simple Mean Shift but points are shifted to new locations
- the density estimate f changes
- becomes concentrated around peaks very fast

Algorithm Gaussian Blurrring Mean Shift (GBMS)

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, Gaussian kernel K(z), h

Iterate until STOP

- for i = 1 : n compute $m(x_i)$

Remarks

- all x_i converge to a single point
 - ⇒ need to stop before convergence

Empirical stopping criterion ?

- define $e_i^t = ||x_i^t x_i^{t-1}||$ the change in x_i at t
- define $H(e^t)$ the entropy of the histogram of $\{e_i^t\}$
- STOP when $\sum_{i=1}^n e_i^t/n <$ tol OR $|H(e^t) H(e^{t-1})| <$ tol,

Convergence rate If true f Gaussian, convergence is cubic

$$||x_i^t - x^*|| \le C||x_i^{t-1} - x^*||^3$$

very fast!!

The Nugent-Stuetzle algorithm

Algorithm Nugent-Stuetzle

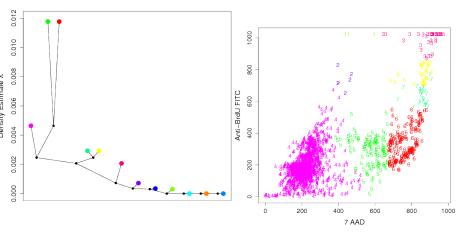
- Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, kernel K(z)
 - ① Compute KDE f(x) for chosen h
 - of for levels $0 < l_1 < l_2 < \ldots < l_r < \ldots < l_R \ge \sup_{x} f(x)$
 - find level set $L_r = \{x \mid f(x) \ge l_r\}$ of f
 - **9** if L_r disconnected then each connected component is a cluster $\to (C_{r,1}, C_{r,2}, \dots C_{r,K_r})$

Output clusters $\{(C_{r,1}, C_{r,2}, \dots C_{r,K_r})\}_{r=1:R}$

Remarks

- every cluster $C_{r,k} \subseteq$ some cluster $C_{r-1,k'}$
- therefore output is hierarchical clustering
- ullet some levels can be pruned (if no change, i.e. $K_r=K_{r-1}$)
- algorithm can be made recursive, i.e. efficient
- finding level sets of f tractable only for d=1,2
- for larger d, $L_r = \{x_i \in \mathcal{D} \mid f(x_i) \geq I_r\}$
- to find connected components
 - for $i \neq j \in L_r$ if $f(tx_i + (1-t)x_j) \geq l_r$ for $t \in [0,1]$ then k(i) = k(j)
- · confidence intervals possile by resampling

Cluster tree with 13 leaves (8 clusters, 5 artifacts)



(from ?)

Chaudhuri-Dasgupta Algorithm

- Uses k-nearest neighbor graphs (filtration)
- Parameters k (nearest neighbors) and $\alpha \in [1, 2]$
- for $r \geq 0$, $G_r = (V_r, E_r)$ with
 - $x_i \in V_r$ iff distance to k-nn of $x_i \le r$
 - $(x_i, x_j) \in E_r$ iff $||x_i x_j|| \le \alpha r$

Consistency Theorem For any ϵ (separation parameter) and δ (confidence), $\alpha \in [\sqrt{2}, 2]$ (graph density), if $k = C \log^2(1/\delta) \frac{d \log n}{2}$

for any two clusters C, C' in cluster tree, there exists a level r so that $C \cap \mathcal{D}, C' \cap \mathcal{D}$ are clusters at level r

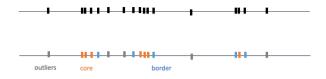
The K-nn density estimator

The K-nn density estimator

- Let $B_r(x)$ be the (closed) ball of radius r centered at x
- If $|B_r(x^i) \cap \mathcal{D}| = k$ then $\hat{p}(x^i) = \frac{1}{r^n \omega_n} \frac{k}{n}$ is an estimate of the density at x^i
 - $\omega_n = \pi^{n/2}/\Gamma(n/2+1)$ is the volume of the unit ball in \mathbb{R}^n
 - ullet intuitively, the ball of radius r contains k/n probability mass
 - ullet Note that the density \hat{p} is not required to integrate to 1

DBScan

- Introduced with no proof, but widely used. Implicitly based on the K-nn estimator
- Parameters r radius, m minimum number points
- Definitions core $Q = \{x^i \in \mathcal{D}, \text{ with } B_r(x^i) \cap \mathcal{D} | \geq m\}$
- border $B = \{x^i \in \mathcal{D} \setminus Q, \text{ so that } x^i \in B_r(x^j), x^j \in Q\}$
- outliers (noise) $O = \mathcal{D} \setminus (Q \cup B)$



- Algorithm idea
- Construct directed graph \mathcal{G} with edges (i,j) where $x^i \in Q, j \in B_r(x^i)$
- The graph edges between core points are undirected/symmetric, the other are from core to border
- Clusters are determined by the connected components of the graph restricted to Q.
- The border points are assigned to a cluster containing x^j so that $x^i \in B_r(x^j)$, $x^j \in Q$ Note that this assignment is not unique!
- Heuristic algorithm estimates r, m

[Supplement: Chaudhuri-Dasgupta Algorithm]

Consistency Theorem For any ϵ (separation parameter) and δ (confidence), $\alpha \in [\sqrt{2}, 2]$ (graph density), if $k = C \log^2(1/\delta) \frac{d \log n}{2}$

for any two clusters $\mathcal{C}, \mathcal{C}'$ in cluster tree, there exists a level r so that $\mathcal{C} \cap \mathcal{D}, \mathcal{C}' \cap \mathcal{D}$ are clusters at level r

• r depends on $\lambda =$ "bridge" between C, C' (and $\sigma > 0$ "tube" width)

$$r^d \omega_d \lambda = \frac{k}{n} + \dots$$
 confidence term

ullet it follows that the needed sample size ${\it n}$ at level λ

$$n = \mathcal{O}\left(\frac{d}{\lambda \epsilon^2 (\sigma/2)^d \omega_d} \log \frac{d}{\lambda \epsilon^2 (\sigma/2)^d \omega_d}\right)$$

- this sample complexity n is almost tight
- for $\alpha < \sqrt{2}$ sample complexity is exponential in d
- New results [Kent, B. P., Rinaldo, A. and Verstynen, T. 2013]
- Remark: algorithm(s) can be applied in any metric space

[Supplement: Support Vector (SV) clustering]

Idea same as for Nugent-Stuetzle, but use kernelized density estimator instead of KDE Algorithm SV

Input data \mathcal{D} , parameters q kernel width, $p \in (0,1)$ proportion of outliers

• construct a 1-class SVM with parameters q, C=1/np this is equivalent to enclosing the data in a sphere in feature space for any x its distance from center of sphere is

$$R^{2}(x) = K(x,x) - 2\sum_{j} \alpha_{j}K(x,x_{j}) + \sum_{i,j} K(x_{i},x_{j})$$

for x_i support vector, $R(x_i) = R$ (same for all)

- ② for all pairs i, j = 1 : n
 - ullet in same cluster if segment [i,j] is within sphere with radius R in feature space
 - practically, test if $R(tx_i + (1-t)x_j) < R$ for t on a grid over [0,1]

Remarks

- the **kernel** used by SV is $K(x, x') = e^{-q||x-x'||^2}$
- q controls boundary smoothness
- SV's lie on cluster boundaries, "margin error" points lie outside clusters (are outliers)
- SV theory $\frac{\text{margin errors}}{n} \rightarrow \frac{1}{nC} = p$ for large n
- hence p controls the proportion of outliers
- p, q together control Kp larger, q smaller $\Rightarrow K$ smaller

The Dirichlet distribution

- $Z \in \{1 : r\}$ a discrete random variable, let $\theta_i = P_z(j), j = 1, \ldots r$.
- Multinomial distribution Probability of i.i.d. sample of size N from P_z

$$P(z^{1,\dots n}) = \prod_{j=1}^r \theta_j^{n_j}$$

where $n_i = \#$ the value j is observed, i = 1, ... r

- n_{1:r} are the sufficient statistics of the data.
- The Dirichlet distribution is defined over domain of $\theta_{1,\dots,r}$, with real parameters $N'_{1,\dots,r} > 0$ bγ

$$D(\theta_{1,\ldots r}; n'_{1,\ldots r}) = \frac{\Gamma(\sum_{j} n'_{j})}{\prod_{j} \Gamma(n'_{j})} \prod_{j} \theta_{j}^{n'_{j}-1}$$

where $\Gamma(p) = \int_0^\infty t^{p-1} e^{-t} dt$.

Dirichlet process mixtures

- Model-based
- generalization of mixture models to
 - infinite K
 - Bayesian framework
- denote θ_k = parameters for component f_k
- assume $f_k(x) \equiv f(x, \theta_k) \in \{f(x, \theta)\}$
- ullet assume prior distributions for parameters $g_0(heta)$
- \bullet prior with hyperparameter $\alpha>0$ on the number of clusters
- very flexible model

A sampling model for the data

- Example: Gaussian mixtures, d = 1, $\sigma_k = \sigma$ fixed
- $\theta = \mu$
- prior for μ is $Normal(0, \sigma_0^2 I_d)$
- Sampling process

0

• for i=1: n sample x_i , k(i) as follows denote $\{1:K\}$ the clusters after step i-1 define n_k the size of cluster k after step i-1

$$k(i) = \begin{cases} k & \text{w.p.} \frac{n_k}{i-1+\alpha}, \ k=1:K \\ K+1 & \text{w.p.} \frac{\alpha}{i-1+\alpha} \end{cases}$$
 (1)

- ② if k(i) = K + 1 sample $\mu_i \equiv \mu_{K+1}$ from $Normal(0, \sigma_0^2)$
- **3** sample x_i from $Normal(\mu_{k(i)}, \sigma^2)$
- can be shown that the distribution of $x_{1:n}$ is interchangeable (does not depend on data permutation)

The hyperparameters

- ullet σ_0 controls spread of centers
 - should be large
- ullet lpha controls number of cluster centers
 - ullet α large \Rightarrow many clusters
- cluster sizes non-uniform (larger clusters attract more new points)
- many single point clusters possible

General Dirichlet mixture model

- cluster densities $\{f(x, \theta)\}$
- parameters θ sampled from prior $g_0(\theta, \beta)$
- cluster membership k(i) sampled as in (1)
- x_i sampled from $f(x, \theta_{k(i)})$
- Model Hyperparameters α, β

Clustering with Dirichlet mixtures

The clustering problem

- $\alpha, g_0, \beta, \{f\}$ given
- \mathcal{D} given
- wanted $\theta_{1:n}$ (not all distinct!)
- note:
 - $\theta_{1:n}$ determines a hard clustering Δ
 - the posterior of $\theta_{1:n}$ given the data determines a soft clustering via $P(x_i \mid k) \propto \int f(x_i \mid \theta_k) g_k(\theta_k) d\theta_k$

Estimating $\theta_{1:n}$ cannot be solved in closed form

Usually solved by MCMC (Markov Chain Monte Carlo) sampling

Clustering with Dirichlet mixtures via MCMC

MCMC estimation for Dirichlet mixture

Input α , g_0 , β , $\{f\}$, \mathcal{D}

State cluster assignments k(i), i = 1 : n,

parameters θ_k for all distinct k

terate

 \bullet for i = 1: n (reassign data to clusters)

- remove i from its cluster (hence $\sum_k n_k = n 1$)
- e resample k(i) by

$$k(i) = \begin{cases} \text{existing } k & \text{w.p.} \propto \frac{n_k}{n-1+\alpha} f(x_i, \theta_k) \\ \text{new cluster} & \text{w.p.} \frac{\alpha}{n-1+\alpha} \int f(x_i, \theta) g_0(\theta) d\theta \end{cases}$$
 (2)

- (3) if k(i) is new label, sample a new $\theta_{k(i)} \propto g_0 f(x_i, \theta)$
- ② for $k \in \{k(1:n)\}$ (resample cluster parameters)
 - **1** sample θ_k from posterior $g_k(\theta) \propto g_0(\theta, \beta) \prod_{i \in C_k} f(x_i, \theta)$
- g_k can be computed in closed form if g_0 is conjugate prior output a state with high posterior

Summary: Parametric vs. non-parametric

Parametric clustering

- Optimizes a cost L
- Most costs are NP-hard to optimize
- Assumes more detailed knowledge of cluster shapes
- Assumes K known (But there are wrapper methods to select K)
- Gets harder with larger K
- Older, more used and better studied

Non-parametric clustering

- Variety of paradigms
 - · density-based methods have no cost function
 - (Max Likelihood: non-parametric mixture models)
 - Bayesian: Dirichlet Process Mixtures (samples from posterior of k(1:n), $\{\theta_k\}$ given \mathcal{D})
- Do not depend critically on initialization
- K and outliers selected automatically, naturally
- Require hyperparameters (= smoothness parameters)

When to use

- Parametric
 - shape of clusters known
 - K not too large or known
 - clusters of comparable sizes
- Non-parametric (density based)
 - shape of clusters arbitrary
 - K large or many outliers
 - clusters sizes in large range (a few large clusters and many small ones)
 - dimension d small (except for SV)
 - lots of data
- Dirichlet Process mixtures
 - shape of clusters known
 - clusters sizes in large range

Notation

$$||x-y||$$
 Euclidean distance for $x,y\in\mathbb{R}^d$, $||x-y||=\sqrt{\sum_{j=1}^d(x_j-y_j)^2}$

Links

- $\bullet \ \ \text{Yee Whye Teh's tutorial on DP Mixtures http://mlg.eng.cam.ac.uk/tutorials/07/ywt.pdf} \\$
- Lecture on exponential family models http: