Lecture III Finding Nearest Neighbors in High Dimensions

Marina Meilă mmp@stat.washington.edu

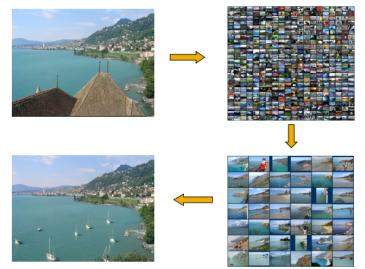
Department of Statistics University of Washington

CSE 547/STAT 548 Spring 2025

- Motivation finding similar items
- Distance functions
- Locality Sensitive Hashing
 - Hash functions and hash tables
 - What is Locality Sensitive Hashing
 - LSH functions from random projections
 - Approximate r-neighbor retrival by LSH
- K-D trees, Ball trees etc.
- Big data and the curse of dimensionality
- Finding similar documents
 - Min-Hash

Reading MMDS Ch.: 3. Finding similar items HTF Ch.:, Murphy Ch.: **Reading:** Lecture 16 notes by Moses Charikar, section 3.2; optionally Cormen, Leiserson, Rivest, Stein "Introduction to Algorithms", chapter on hashing.

Thanks to mmds.com (Leskovec, Rajaraman and Ullman) and randorithms.com (Ben Coleman)



A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space
- Examples:
 - Pages with similar words
 - For duplicate detection, classification by topic
 - Customers who purchased similar products
 - Products with similar customer sets
 - Images with similar features
 - Users who visited similar websites

The problem: finding neighbors in high dimensions

- Given \mathcal{D} of size n in \mathbb{R}^d , and given a query point x find the neighbors of x in \mathcal{D}
 - here: all neighbors in radius r
 - sometimes the k nearest-neighbors
 - sometimes just 1 neighbor
- query point can be in \mathcal{D} , e.g. in clustering, dimension reduction, or not (e.g. retrieval, image completion)
- $n \ll 10^6$ and $d > 10^2$
- Brute force (suppose we need neighbors of all $x_i \in \mathcal{D}$)
 - compute time O(n²d) Too large!
- Can we do it exactly in subquadratic time? Probably NO
 - [if the SETH (Strong Exponential Time Conjecture) holds]
- Rephrased problem: find approximate nearest neighbors
 - e.g. if x has neighbor $x' \in \mathcal{D}$ at distance r, return an $x'' \in \mathcal{D}$ at distance < cr
 - with c>1 some constant, and w.h.p.¹, usually measured by a confidence δ
 - we measure performance of algorithm as function of (c, r, δ)

Distance and similarity functions

Distances

- Euclidean $x, x' \in \mathbb{R}^d$, $d_{Euclid}(x, x') = ||x x'|| = \sqrt{x^T x + (x')^T x' 2x^T x'}$
- L1 (Manhattan) $x, x' \in \mathbb{R}^d$ $d_{11}(x, x') = ||x x'||_1$
- L1 (Manhattan) $x, x' \in \mathbb{R}^d$ $d_{l,1}(x, x') = \|x x'\|_1$ Hamming $x, x' \in \{0, 1\}^d$ $d_H(x, x') = x^T x + (x')^T x' 2x^T x' = \#x + \#x' 2\#(x \cap x')$

Similarities

• cosine
$$x, x' \in \mathbb{R}^d$$
 or $\{0, 1\}^d \cos(x, x') = \frac{x^T x'}{\sqrt{(x^T x)((x')^T x')}}$

• Jaccard
$$x, x' \in \{0, 1\}^d$$
 $J(x, x') = \frac{\#(x \cap x')}{\#(x \cup x')} = \frac{x^T x'}{x^T x + (x')^T x' - x^T x'}$

- Note that if $x, x' \in \{0, 1\}^d$ they can be seen as indicator functions for subsets of 1: n.
- Hence $x^T x' = \#(x \cap x')$ represents the cardinality of the intersection of sets given by x, x'

III NN in High Dimensions

All distances above are metrics.

Hash functions and hash codes

Let the data space be \mathbb{R}^d , and assume some fixed probability measure on this space.

- A family of hash functions is a set $\mathcal{H} = \{h : \mathbb{R}^d \to \{0,1\}\}$ with the following properties
 - ① For each h, $Pr[h(x) = 1] \approx \frac{1}{2}$
 - \bigcirc The binary random variables defined by the functions in \mathcal{H} are mutually independent. (Or, if \mathcal{H} is not finite, a "not too large" random sample of such random variables is mutually independent.)
- Let $h_{1:k}$ be a mutually independent subset of \mathcal{H} . We call

$$g(x) = [h_1(x) h_2(x) \dots h_k(x)] \in \{0,1\}^k$$
 (1)

the hash code of x

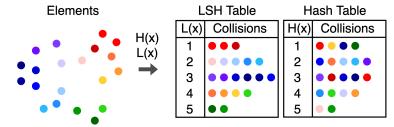
- Note that the codes g(x) are (approximately) uniformly distributed; the probability of any $g \in \{0,1\}^k$ is about $\frac{1}{2^k}$.
- Useful hash functions must be fast to compute.

Hash tables

- ullet A hash table ${\mathcal T}$ is a data structure in which points in ${\mathbb R}^d$ can be stored in such a way that
 - **1** All points with the same code g are in the same bin denoted by \mathcal{T}_g . The table need not use space for empty bins.
 - ② Given any value $g \in \{0,1\}^k$, we can obtain a point in \mathcal{T}_g or find if $\mathcal{T}_g = \emptyset$ in constant time (independent of the number of points n stored in \mathcal{T}). Some versions of hash tables return all points in \mathcal{T}_g , e.g., as a list, in constant time.
 - ① It is usually assumed that storing a point x with given code g(x) in a hash table is also constant time.
- Hence, using a hash table to store an x or to retrieve something, involves computing k hash functions, then a constant-time access to \mathcal{T} .
- When $x' \neq x$ and g(x') = g(x) we call this a collision. In some applications (not of interest to us), collisions are to be avoided.

III NN in High Dimensions

Hashing vs. Locality Sensitive Hashing (LSH)



by Ben Coleman randorithms.com $\,$

12

Locality Sensitive Hash Functions and Codes

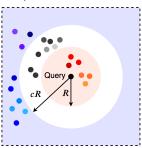
• A hash function h is **locality sensitive** iff for any $x, x' \in \mathbb{R}^d$

$$Pr[h(x) = h(x')] \ge p_1$$
 when $||x - x'|| \le r$ (2)

$$Pr[h(x) = h(x')] \le p_2$$
 when $||x - x'|| \ge cr$ (3)

with p_1, p_2, r and c > 1 fixed parameters (of the family \mathcal{H}) and $p_1 > p_2$.

• W.I.o.g., we set $p_1 = p_2^{\rho}$ for some $\rho < 1$.



by Ben Coleman randorithms.com

LSH functions

 A locality sensitive h makes a weak distinction between points that are close in space vs. points that are far away. A hash code g from locality sensitive hash functions sharpens this distinction, in the sense that the probability of far away points colliding can be made arbitrarily small.

$$p_{bad} = Pr[g(x) = g(x') | ||x - x'|| > cr] \le p_2^k$$
 (4)

- Assume x is not in \mathcal{T} ; for any $x' \in \mathcal{D}$ which is far from x,the probability that x' collides with x is $< p_{bad}$.
- We construct $\mathcal T$ so that $p_{bad} \leq \frac{1}{n}$ for n the sample size. For this we need Exercise (in Homework 1)

$$k = \frac{\ln n}{-\ln p_2} \quad \Rightarrow \quad p_{bad} \le \frac{1}{n} \tag{5}$$

• Suppose $x' \in \mathcal{T}$ is "close" to x. What is the probability that g(x') = g(x)?

$$p_{good} = p_1^k = p_2^{\rho k} = \frac{1}{n^{\rho}}$$
 (6)

This is the probability that the bin $\mathcal{T}_{g(x)}$ contains x'.

- h depends on the distance d
- h and g sometimes depend on r

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

How to find **good** hash functions?

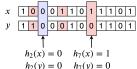
- We need large families of h functions
- that are easy to generate randomly
- ullet and fast to compute for a given x
- Generic method to obtain them: random projections

LSH function for Hamming distance

- $\mathcal{H} = \{h_i = \text{bit}_i(x), j = 1 : d\}$
- ullet a random $h \in \mathcal{H}$ samples a random bit of x
- Collision probability

$$p_1(x,x') = 1 - \frac{d_H(x,x')}{d}$$
 (7)

To bit sample, randomly choose an index This is sensitive to Hamming distance



by Ben Coleman

randorithms.com

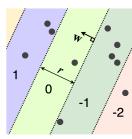
III NN in High Dimensions

LSH function for Euclidean and L1 distance

 project x on a random line, round to multiples of r

$$h_{w,b}(x) = \lfloor \frac{w^T x + b}{r} \rfloor \tag{8}$$

- If $w \sim Normal(0, I_d)$, hash function for Euclidean distance
- If w ~ Cauchy(0,1)^d, hash function for L1 distance
- Collision probability (p = 2 for Normal, p = 1 for Cauchy)



by Ben Coleman randorithms.com

$$p_1(x, x') = \text{deterministic function of} ||x - x'||_p$$
(9)

• Hash function space \mathcal{H}_r is infinite, and depends on r

Analysis of projection on a random vector

- Data are $x \in \mathbb{R}^d$ as usual.
- Define $h_{w,b}: \mathbb{R}^d \to \mathbb{Z}$ by

$$h_{w,b}(x) = \lfloor \frac{w^T x + b}{r} \rfloor \tag{10}$$

with r > 0 a width parameter, $w \in \mathbb{R}^d$, $b \in [0, r)$.

- Intuitively, x is "projected" on w^2 , then the result is quantized into bins of width r, with a grid origin given by b.
- The family of hash functions is $\mathcal{H}_r = \{h_{w,b}, w \in \mathbb{R}^d, b \in [0,r)\}.$
- Sampling \mathcal{H}_r : $w \sim Normal(0, I_d)$, $b \sim uniform[0, r)$.
 - Because the Normal distribution is a stable distribution, this ensures that $w^T x$ is distributed as Normal(0, $||x||^2$). Exercise Verify this
 - Hence $w^Tx w^Tx'$ is distributed as Normal(0, $||x x'||^2$). Exercise Verify this
 - Moreover, if hash functions are sampled independently from \mathcal{H}_r (and nothing is known about x) then $h_{w,b}(x)$, $h_{w',b'}(x)$ are independent random variables. Exercise Prove this

LSH function for angles

project x on a random line, take the sign

• Hash function space ${\cal H}$ is infinite

$$h_{w,b}(x) = \operatorname{sign}(w^T x) \tag{11}$$

Collision probability

$$p_1(x, x') = 1 - \frac{\theta(x, x')}{\pi}$$
 (12)

 $p(x, y) = 1 - \frac{\theta}{\pi}$ $\frac{\theta}{\pi} = \frac{1}{\pi}$

by Ben Coleman

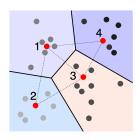
h(x) = 1 h(x) = -1

[110] [111] [111] [110] [110] [110] [110] [110] [110] [110] [111] [110]

by Ben Coleman randorithms.com

Clustering LSH

- $\mathcal{H} = \{h = k(x), \text{ for some clustering of data}\}$
- h takes values in 1 : K
- This is a data dependent hash function family
- Clustering can be K-means, min-diameter, hieararchical . . .
- No theoretical guarantees, but works well in practice



by Ben Coleman

randorithms.com

III NN in High Dimensions

Approximate r-neighbor retrival by LSH

Input \mathcal{D} set of n points, L mutually independent hash codes $g_{1:L}$ of dimension k. dexing Construct L hash tables $\mathcal{T}^{1:L}$, each storing \mathcal{D} .

- trieval Given x
 - \bigcirc compute g(x)**2** for i = 1, 2, ..., L
 - if the bin $\mathcal{T}_{\sigma(x)}^j \neq \emptyset$
 - return some (all) x' from it.
 - 2 stop if a single neighbor is wanted.

Some analysis. We set $L = n^{\rho}$

- Indexing time $\propto kn^{\rho+1}$
- Retrieval time $\propto kn^{\rho}$
- Space used $\propto kn^{\rho+1}$
- For each $x' \in \mathcal{D}$ close to x, the probability that x' is NOT returned for any $j \in 1 : L$ is

$$\left(1 - \frac{1}{n^{\rho}}\right)^{n^{\rho}} \approx \frac{1}{\rho} \tag{13}$$

This can be made arbitrarily small by multiplying L with a constant.

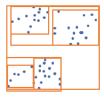
• For each $x' \in \mathcal{D}$ far from x, the probability that x' is NOT returned for any $j \in 1 : L$ is

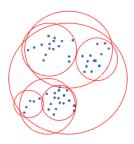
$$(1 - \frac{1}{N})^{n^{\rho}} \approx \left(\frac{1}{n}\right)^{1/n^{1-\rho}} \approx \frac{1}{n^{0}} = 1$$
 (14)

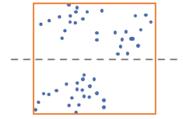
 Hence, we are almost sure not to return a far point, and have a significant probability to return a close point when one exists, if no points neither far nor close are in the data. This is.

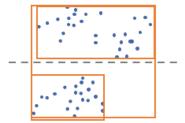
Heuristics for neighbors in high-dimensions

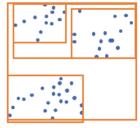
- typically a form of hierarchical clustering
- K-D tree for low dimensions (but observed to work well in high dimensions too)
- Ball tree for high dimensions

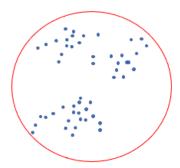


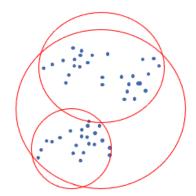




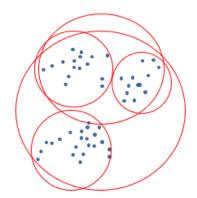


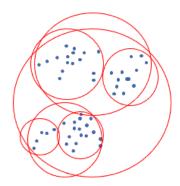






III NN in High Dimensions





K-D Tree construction

node k:

- $b_{1:d}^{\min}$, $b_{1:d}^{\max}$ min, max of box in each dimension
- ullet $j_{\max}, \Delta_{\max} = \operatorname{argmax}, \max_j \{b_i^{\max} b_i^{\min}, j = 1: d\}$ the largest dimension of the box
- ullet n_k, \bar{x}_k, \ldots number of points in node, mean, other statistics
- if k is **leaf** then \mathcal{D}_k an array of the data under this node
- pointers p_k , l_k , r_k to parent and children nodes

Algorithm SPLIT-NODE(k)

It is assumed that k is **leaf**, hence $l_k, r_k = \text{null}$

- Create new leaf nodes l_k , r_k children of k and set k as their parent
- ② Let $b^* = (b_{i_{max}}^{max} + b_{i_{max}}^{min})/2$
- **6** Create empty sets \mathcal{D}_{l_k} , \mathcal{D}_{r_k}
- **o** For $i = 1 : n_k$
 - if $x_{i,j_{\text{max}}} < b^*$ then move x_i from \mathcal{D}_k to \mathcal{D}_{l_k} ; else move x_i to \mathcal{D}_{r_k}
 - ullet update n_{l_k}, n_{r_k} and the other statistics as needed
 - update b_{lk},r_k
- ullet Update $\Delta_{I_k, \max}, j_{I_k, \max}$ and $\Delta_{r_k, \max}, j_{r_k, \max}$

Searching for r-neighbors with K-D Tree

- Denote by Node_k the *d*-dimensional box $[b_1^{\min}, b_1^{\max}] \times \dots [b_d^{\min}, b_d^{\max}]$
- When is $B_r(x) \cap \text{Node}_k \neq \emptyset$?
 - x close to a corner: closest corner is $c = [\min\{|b_j^{\min} x_j|, |b_j^{\max} x_j|\}]_{j=1:d}$
 - x is interior or close to a face: $x_j \in [b_i^{\min}, b_i^{\max}]$ if $j \neq j_0$, and $x_j \in [b_i^{\min} r, b_i^{\max} + r]$ for $j = j_0$
- When is $Node_k \subset B_r(x)$?
 - \bullet furthest corner is $c' = [\max\{|b_j^{\min} x_j|, |b_j^{\max} x_j|\}]_{j=1:d}$
 - if $||x c'|| \le r$ then all $Node_k \subset B_r(x)$

Retrieving all points in $\mathcal{D} \cap B_r(x)$

- Recursively from the root, examine Node_k
- If $B_r(x) \cap Node_k = \emptyset$, return with no output
- Else
- If $Node_k \subset B_r(x)$ output all \mathcal{D}_k and return
- Else examine children of k

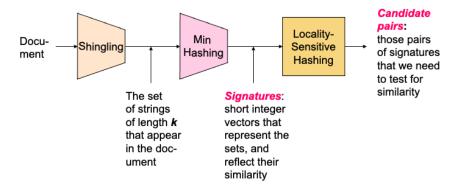
Task: Finding Similar Documents

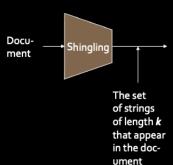
- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- Applications:
 - Mirror websites, or approximate mirrors
 - Don't want to show both in search results
 - Similar news articles at many news sites
 - Cluster articles by "same story"
- Problems:
 - Many small pieces of one document can appear out of order in another
 - Too many documents to compare all pairs
 - Documents are so large or so many that they cannot fit in main memory

3 Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
- **Locality-Sensitive Hashing:** Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs!

The Big Picture





Shingling

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

- Step 1: Shingling: Convert documents to sets
- Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles!

Marina Meila (UW)

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- **Example:** k=2; document D_1 = abcab Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
 - Option: Shingles as a bag (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

Compressing Shingles

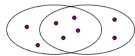
- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its k-shingles
 - Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hashvalues were shared
- Example: k=2; document D₁= abcab Set of 2-shingles: S(D₁) = {ab, bc, ca} Hash the singles: h(D₁) = {1, 5, 7}

Marina Meila (UW)

Similarity Metric for Shingles

- Document D₁ is a set of its k-shingles C₁=S(D₁)
- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$$



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among N = 1 million documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
 - $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N = 10 million, it takes more than a year...

Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among N = 1 million documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
 - $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N = 10 million, it takes more than a year...

Min-Hash - Motivation

- Denote $S = \{ \text{ space of } k\text{-shingles } (k\text{-grams}) \}$
- $|S| = |alphabet|^k$ HUGE!
- ullet document $o c \in \{0,1\}^{|\mathcal{S}|}$ sparse!
- Similarity(document, document') = J(c, c') Jaccard

$$J(c,c') = \frac{\#(c \cap c')}{\#(c \cup c')}$$

- Wanted compress $c \to x$, so that
 - $x \in \mathbb{Z}_+^L$ with $L \ll |\mathcal{S}|$
 - Jaccard is preserved (approximately), i.e.

$$J(c,c') \approx \frac{\#\{x_i = x_i'\}}{L} \tag{15}$$

(fraction of equal elements in signatures approximates Jaccard)

- x is called signature of c
- How? Min-Hash
- Why not random bit hashing?

Min-Hashing Example

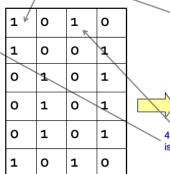
Note: Another (equivalent) way is to store row indexes: 1 5 1 5

2 3 1 3 6 4 6 4

2nd element of the permutation is the first to map to a 1

Permutation \(\pi \) Input matrix (Shingles \(\pi \) Documents)

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
,	_	_



,	2	1	2	1
	2	1	4	1
			/	

Signature matrix M

4th element of the permutation is the first to map to a 1

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0

1

1

0

The Min-Hash Property

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Why?
 - Let X be a doc (set of shingles), y ∈ X is a shingle
 - Then: Pr[π(y) = min(π(X))] = 1/|X|
 - It is equally likely that any y∈ X is mapped to the min element
 - Let \mathbf{y} be s.t. $\pi(\mathbf{y}) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or One of the two cols had to have $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$ one of the two cols had to have 1 at position y
 - So the prob. that **both** are true is the prob. $\mathbf{y} \in C_1 \cap C_2$
 - $Pr[min(\pi(C_1))=min(\pi(C_2))]=|C_1 \cap C_2|/|C_1 \cup C_2|=sim(C_1, C_2)$

Min-Hash high-level summary

- Choose a family of hash functions $\mathcal{H} = \{h_{\pi}\}$
 - where π are permutations of S
 - $h_{\pi}(c) \in \{0, 1, \dots |\mathcal{S}| 1\}$
 - $h_{\pi}(c) =$ number 0's at the beginning of $\pi(c) =$ location of 1st 1 in $\pi(c)$ (zero-indexed)
- so that

$$Pr[h_{\pi}(c) = h_{\pi}(c')] = J(c,c')$$
 for all π,c,c' (Min-Hash Property)

- Choose L random permutations $\pi_{1:L}$
- Map c vectors to x by

$$x(c) = [h_{\pi_1}(c), h_{\pi_2}(c), \dots h_{\pi_L}(c)]$$

• Approximate J(c,c') by averaging

$$J(c,c') = \frac{1}{L} \sum_{l=1}^{L} 1_{[x_l = x'_l]}$$

Min-Hashing Example

Permutation π

Input matrix (Shingles x Documents)

Signature matrix M

2	4	3	1
3	2	4	1
7	1	7	C
6	3	2	c
1	6	6	C
5	7	1	1
4	5	5	1

1	0	1	0
1	0	0	1
0	1	o	1
0	1	o	1
0	1	0	1
1	0	1	0
1	o	1	0

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

Col/Col Sig/Sig

1-3	2-4	1-2	3-4
0.75	0.75	0	0
0.67	1.00	0	0

Finding similar documents: Summary

```
Input Documents = lists of characters, length large, n large Shingling documents \rightarrow binary vectors k-shingle space \mathcal S large, c representation high-dimensional Min-Hash Binary vector c \rightarrow signature x, \dim(x) = L \ll \dim(c) preserves Jaccard similarity LSH on signatures x find neighbors in sub-quadratic time
```

III NN in High Dimensions