
1 More models

1.1 The Preferential Attachment Model (PAM)

This very popular model was proposed by Albert and Barabasi. It is a generative
model for both nodes and edges, so it can be thought of as a graph process.

Algorithm PreferentialAttachment

Input number of nodes n, new node degree d

Initialize with V = {1}, E = ∅.

for i = 2, . . . n

1. create new node i
2. select up to d nodes {j1, . . . jd} ⊂ V at random, with probability

proportional to their degrees, without replacement. (i.e. renormalize
the probability after each node is selected).

3. add edges ijl, l = 1 : min(d, |V |) to E and add i to V

This model explains well the heavy tailed-distribution of node degrees observed
in real networks. Variations have been proposed to account for other character-
istic of real networks, like the slow-growing (or bounded ?) diameter.

1.2 “Expected degree” models

This class of models removes the assumptions that nodes are all alike. Heren-
odes are allowed to have different weights (or propensities) modulating their
probability to form links with other nodes.

Model and parameters The simplest version of this model is an “augmented
SBM” defined as follows: V is the set of nodes, K the number of disjoint
communities, B ∈ [0, 1]K×K a matrix of link strenghts between communities
(symmetric). Each node i has a paramer pi, measuring its propensity to form
ties, and zi ∈ {1, . . .K} is the cluster containing node i. The probability of edge
ij is given by

Pij = pipjBzizj (1)

One must choose parameters so that the above does not exceed 1.
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A variant with overlapping communities (from Arora and Ge) Set of nodes
V is given, together with a set of communities C1:K ⊂ V , which may have non-
empty intersections. Each node i may belong to up to d communities. For each
community C, the propensity of i in C is piC ∈ (0, 1]. For every pair of nodes
i 6= j in V , the edge probability Pij is

Pij ≥ max
C:i,j∈C

piCpjC if i, j have some C in common (2)

Besides the intra-community edges, one assumes that there are edges into C
from nodes outside C. These edges are treated as outliers; one assumes that
each node i′ 6∈ C has no more than (α−ε)|C| edges into C, with α = mini∈C p

2
iC .

Hence, there is a gap between i′ 6∈ C and i ∈ C w.r.t the number of edges into
C. Another assumption is that a fraction γ > 0 of a node’s edges are intra-
communitty.

With these conditions, an algorithm exists that recovers all the communities in
time O(nCα,γ,ε max |C|d) (this is called quasi-polynomial time, i.e. polynomial in
n if maxC can be considered bounded).

2 A spectral algorithm for SBM estimation

This algorithm is simple and elegant. It is essentially a spectral clustering
algorithm. It does not assume that the number of communities is known.

Algorithm Spectral community detection (Rohe,Chatterjee,Yu)
Input Graph adjacency matrix Y and node set V , |V | = n

1. Denote by di the degree of node i ∈ V and by D = diag{di, i ∈ V }.
2. Compute the Laplacian L = D−1/2Y D−1/2.
3. Compute the non-zero eigenvalues of L, ordered by magnitude |λ1| = 1 ≥
|λ2| ≥ . . . ≥ |λK | > 0. The number of clusters K is the number of non-zero
eigenvalues.
Compute also the eigenvector matrix X ∈ Rn×K associated with theses
eigenvalues.

4. Now use K-means to cluster the n rows of X as points in RK .
Return the resulting clustering.

Remarks:

� The actual normalized Laplacian is not L, but I −L, which has the same
eigenvectors as L.
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� Once the cluster assignments are obtained, the estimation of B is straight-
forward (assuming the assignments are correct).

� Exercise What are the differences between this algorithm and “standard” spec-

tral clustering? What simplifications are made and why are they acceptable

here but not recommended in standard spectral clustering?

� It is assumed that K-means finds the global minimum.

Assumptions and consistency result

Here will denote by L̄, D̄, . . . the values of the quantities in the algorithm
obtained from the expected Y matrix (with E[Y ] = [̄Y ] = [Pij ]).

� Eigenvalue gap1 n−1/2 log2 n = O(λ2
K)

� Node degrees are not too small τn = mini d̄i
n > 2

lnn

� Denote by n1 the size of the largest (true) cluster

� Let M = {i ∈ V, ||Xi: − X̄i:O||2 ≥ 1/
√

2n1}; this defines the set of (pos-
sibly) misclustered points. Xi: is the row of i in X, X̄i: is its row in the
X obtained from the expected Y , and O is an orthogonal matrix that
“aligns” the two sets of columns.

� With the above assumptions, it can be proved that, with high probability,

|M | = o

(
n1 ln2 n

nλ4
Kτ

4
n

)
(3)

Intuition: why it should work

� First idea: the “expected” case is simple Note that L̄ has constant rows
in each cluster. Hence, its rank is equal to the number of clusters in the
data, i.e. K. The number of non-zero eigenvalues (of L̄) indicates this
number.

Also, since L̄ has constant rows in each cluster, its K principal eigenvectors
X̄ will be piecewise-constant, i.e the rows of X̄ will be the same whithin
a cluster.

1Is this λ̄K?
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� Second idea: how to show the actual X is “near” the “expected”

This is a brilliant idea! First to see why a brilliant idea is needed, on a
very simple example.

Example Let Yij ∼ Bernoulli( 1
2 ) (iid) for all i, j ∈ V . Then,

1

n2
||Y − E[Y ]||2F =

1

4
(4)

The Frobenius norm sums over all entries in Y , and the normalization by
n2 computes the average. So, the matrix Y does not concentrate around
its mean when n → ∞! It will be hard to prove that its eigenvectors
do! This is the hurdle. (The Laplacian will behave similarly, up to some
scaling factors.)

Now, the brilliant idea is to square Y (in the proof, L is squared). This
does not chage the eigenvectors; if we can prove that Y 2 concentrates
around (E[Y ])2, then we have a proof for the eigenvectors consistency
(after calling in some Matrix Perturbation Theory).

(Y 2)ij =
∑
k

YikYkj ∼ Binom(
1

4
, n), for i 6= j, and ∼ Binom(

1

2
, n), for i = j(5)

(E[Y ])2 =
n

4
1n×n (6)

To make the story short, Y 2/n concentrates, and

1

n2
||Y 2/n− (E[Y ])2/n||2F = o

(
ln2 n

n

)
(7)

(this bound is not trivial to prove).

3 The probabilistic method in graph theory –
an example

Take an Erdos-Renyi graph on n nodes, with parameter p ∈ (0, 1). What
should be p so as to guarantee that the graph has no isolated nodes (w.h.p)? It
is easy to see that p cannot be constant, it must grow with n. The question is
how? We will prove that the correct rate is p(n) = lnn

n . This function p(n) is
called a threshold because whenever p > p(n) the graph has (asymptotically)
almost surely no isolated nodes, and whenever p < p(n) the graph will, again
(asymptotically) almost surely have some.

Proof (after D. West) Set Xi = 1 if i ∈ V is isolated. Let X =
∑
iXi.

Obviously, E[Xi] = (1 − p)n−1, E[X] = n(1 − p)n−1, and the graph has no
isolated nodes iff X = 0.
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Assume p = c lnn
n , with c > 1. Let’s make some (rather crude) approximations

(assuming n large):

(1− p)n = en ln(1−p) = en[−p+p2/2−...] ≈ e−np, (8)

E[X] ≈ ne−np/(1− p) = ≈ n1−c (since 1− p→ 1), (9)

and since c > 1 we have that E[X] → 0. Since X ∈ {0, 1, . . .}, it implies that
P [X = 0]→ 1.

For the reverse relationship, we assume c < 1 and we need to use another proof
technique. Exercise Fill in the gaps in this proof sketch By Markov’s inequality, for
any non-negative random variable

P [X = 0] ≤ E[X2]

(E[X])2
− 1 (10)

Hence, we prove (with more crude approximations) that E[X2] approaches
(E[X])2. Hence P [X = 0]→ 0 and the graph has isolated nodes w.h.p.

A remarkable fact in random graph theory is that, at exactly the same threshold,
the graph also becomes connected.

4 Homomorphisms and graph convergence

(After Lovasz, “Large networks and graph limits”) Let G = (V,E), H = (U,F )
be two graphs. A homomorphism between G and H is a function φ : V → U
with the property that if ij ∈ E, then φ(i)φ(j) ∈ F . In other words, if i, j are
connected by an edge in G, their images are also connected in H. In general, a
homomorphism need not be injective, and non-edges in G can map to edges in
H. In the theory of graph limits, the number of homomorphisms between G and
H denoted hom(G,H) plays a central role.

It is helpful to consider, for a fixed graph G, the infinite vector h(G) = [. . . hom(H,G) . . .]
where H ranges over all graphs. Two graphs G,G′ may be compared by compar-
ing their vectors h(G), h(G′). Interestingly, h(G) = h(G′) iff G and G′ are isomor-
phic (which means if they are the same graph, up to a renaming of the nodes)
(Theorem 5.29). Moreover, the graph G is uniquely determined by the finite set
of graphs H with no more nodes than G. The same is true for hom(G, . . .).

Homomorphism densities are normalized number of homomorphisms. Let
|V | = n, |U | = k.

t(H,G) =
hom(H,G)

nk
(11)

5



is the probability that a random subset of k nodes from G (with replacement)
induces a graph homomorphic with H.

For sparse graphs, the homomorphism densities become too small to be useful,
and one works with homomorphism frequencies, defined by

t∗(H,G) =
hom(H,G)

n
(12)

The interpretation of t∗ is as follows: Label one node of U with label 1. Denote
by homi(H,G) the number of homomorphisms of H which map node 1 to i ∈ V .
Since the graph is finite degree, ifH is connected, all the homomorphisms will be
in a k-neighborhood of node i, which contains only a bounded number of nodes,
no matter what n is. Hence homi(H,G) is bounded for all i. Now t∗(H,G) is
the average over i ∈ V of homi(H,G).

In the same way as for the unnormalized hom(. . . ,G), we can ask if the vector
of all t(H,G) determines G. The answer is that it “almost” determines it, up to
a “blow-up”2.

By representing a graph as a vector t(G) we can now consider when a sequence
of graphs converges. It is understood that in a sequence of graphs, the number
of nodes n tends to infinity, so we can assume w.l.o.g that Gn has n nodes. We
say that the sequence {Gn}n is convergent iff t(H,Gn)→ t(H) for every H.

The limit object is not a graph, but a graphon (described next). Note that
this is not the only way to define a graph limit, but it is one in which graph
properties are preserved.

5 Graphons

A graphon is a function f : [0, 1]2 → [0,∞) which is measurable, bounded,
symmetric (i.e. f(x, y) = f(y, x). Intuitively, the interval [0, 1] represents the
vertex set V , and f(x, y) represents the probability of edge (x, y).

Hence, the degree (distribution) of node x defined by the marginal

df (x) =

∫ 1

0

f(x, y)dy (13)

corresponds to limi/n→x
di
n .

2A “blow-up” is an operation in which each node is replicated p times, along with its
neighborhood. The normalization in 11 makes the blown-up graph indistinguishable from the
original graph.
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As permuting the numbering of the nodes of a graph leaves the graph invariant,
a graphon f is defined up to “permutations” of [0, 1], called measure preserving
bijections.

The example below shows the limit of the random graph sequence given by

P
(n)
ij = e−(i+j)/n to the graphon f(x, y) = e−(x+y).

n = 10 n = 100 n = 500

Limits of sparse graphs are defined in terms of the homomorphism frequencies
t∗, and are called graphimes.

6 SBM and graphon estimation

One can approximate a density f over [0, 1]2, arbitrarily closely by a piecewise
constant function over a grid of intervals that covers [0, 1]2. Such an approxi-

mation f̂ is nothing else than a Stochastic Block Model. Therefore, estimation
of SBM’s and of graph limits are deeply related3

A generative model

Let f be a graphon, and (ρn) an unbounded sequence of edge density parameters
(without it, the graphs generated would have bounded degree – too sparse).

Given n
1. Sample nodes ξ1:n uniformly i.i.d from [0, 1]
2. Sample edges Yij , 1 ≤ i < j ≤ n from Bernoulli(Pij) with

Pij = ρnf(ξi, ξj) (14)

3The relationship follows from Szemeredy’s Regularity Lemma which states that any graph
can be approximated arbitrarily closely by a SBM with a large enough number of blocks. In
general, “large enough” is a very large number (a tower of powers). So, to “learn” a graph
(limit) we must assume that it is “nice”, perhaps in the sense that it is described by not so
many blocks.
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An idealized graphon estimation algorithm

This algorithm outputs a partition of the nodes into K clusters, and, for each
pair of labels , (k, k′) ∈ {1, . . .K}2 a value f̂k,k′ . The set of values {f̂kk′ , (k, k′) ∈
{1, . . .K}2} represent a graphon f̂ that is piecewise constant over the edges with
ends zk, zk′ . The node locations ξ1:n are not determined, because graphons are
defined up to bijective measure preserving transformations of [0, 1]. We denote
by zi the cluster label of point i.

Given a graph with edgeset Y and K the “number of blocks”

� For all possible assignments z1:n of nodes into blocks

1. Estimate the SBM matrix B(z)

Bkk(z) =

∑
zi=zj=k

Yij

nk(nk − 1)
Bkk′(z) =

∑
zi=k,zj=k′

Yij

nknk′
, for k 6= k′

(15)
2. Estimte its log-likelihood l(z)

� Select the B̂ = B(ẑ) with ẑ = argmaxz l(z)

Theorem When does it work?
Assumptions

� smoothness f is Hölder continuous with parameter α ∈ (0, 1]

|f(x, y)− f(x′, y′)|
||(x, y)− (x′, y′)||α

≤ M ≤ ∞ (16)

� f not too sparse inf f ≥ ε > 0

� scaling ρn growing not too slowly ρn = ω(n−1 log3 n)4

� K grows unbounded with n

� partition not too far from uniform Let nk the size of Ck, nmin = mink nk,
n̄ = n/K

� sufficient samples (edges) in each grid cell Ck × Ck′ n2
minρn = ω(log n),

n̄2ρn = ω(K2 log3 n)

4fn = ω(gn) means gn = o(fn), i.e the rate of fn is strictly larger than the growth rate of
gn.
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It can be shown, under these conditions that the non-parametric estimator of f
given by (ẑ, B̂) is consistent, i.e. that it converges to the true graphon f when
n→∞.

The convergence is in mean squared error

inf
σ

∫ ∫
[0,1]2

|f(σ(x), σ(y))− f̂(x, y)|2dxdy (17)

where σ ranges over all measure preserving bijections (that is “permutations”
of [0, 1]) of [0, 1] into itself.
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