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1 Some definitions

The definitions and notations are the same as in Lecture 3.1.

2 Network problems

� Connectivity A large network is almost surely disconnected. We are
interested in large subsets of nodes that are disconnected from the rest.
Moreover, if between two large subsets of nodes only a few edges exist, for
all interesting purposes these two sets are still disconnected. So “connec-
tivity” really means: can we cut the graph into two parts of comparable
sizes, that have very few edges crossing between them?

This is exactly what the Normalized Cut criterion measures.

� Finding communities Amounts to graph clustering. Studied in com-
puter science, social sciences, statistics, mathematics. Area where most
statistical models have been developed.

Finding communities is conceptually similar to finding “connected com-
ponents” above. The quality measure for a community is called conduc-
tance and is related to the Normalized Cut.

φ(S) =
Cut(S, V \ S)

min(V ol(S), V ol(V \ S))
(1)

Recent studies on real network show that community sizes do not grow
in proportion to graph size! Hence realistic models have K → ∞ when
n→∞.

� Centrality, prestige, and authority The goal is to give each node a
score that represents its prestige or social importance. For example

– authority of sources of information (like in PageRank or HITS) on
the internet

– impact in citation networks
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– influence, i.e. capacity of influencing others, or of attracting followers,
in social networks

Various scores have been developed to quantify the above

(well understood measures)

– node degree (number of neighbors)

– eigenvector centrality

(not so well understood, may behave in unpredictable ways)

– closeness centrality

CC(i) =
n− 1∑
j d(i, j)

(2)

– betweeness centrality

CB(i) =
∑
j,k

σjk(i)

σjk
(3)

where d(i, j) is the graph distance and σjk(i) is the number of shortest
paths between j, k that pass through i.

– ...and many more

� Semisupervised learning We want to estimate a function y(i), i ∈ V
on the graph. For some nodes i ∈ S, y is observed; in other words these
nodes are labeled, while the remaining nodes in V \V are unlabeled. This
problem is similar to supervised learning, with the difference that we know
for which future data we need to predict y.

� Visualization

3 Models for networks

� Erdos-Renyi (the null model)

� p1 and p2 models (GLM models)

� SBM (Stochastic Block Model)

� ERGM

� Latent space model

� Mixed membership SBM

� Multiplicative attributes model

� Graphons

SBM, MMSBM, and MAGM models communities explicitly.
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4 Mixed membership SBM (MMSBM)

This is a generative hierarchical model, that can represent directed as well as
undirected graphs.

� Parameters K number of clusters, α prior parameter for membership dis-
tribution, B = [Bkk′ ]

K
k,k′=1 matrix of edge probabilities, conditioned on

cluster membership.

� for each node i ∈ V

– draw its mixed membership, a distribution πi over clusters 1 : K

πi ∼ Dirichlet(
α

K
, . . . ,

α

K
) (4)

� for each pair of nodes i, j ∈ V

– draw current membership of i, zi→j ∼ πi
– draw current membership of j, zi←j ∼ πj (the notation zi←j empha-

sises that the membership is in the cluster only for this particular
edge, and another membership will be sampled for the next edge
incident to j).

– sample edge Yij ∼ Bernoulli(Bzi→j ,zi←j )

– This sampling can generalize easily to directed or weighted graphs

The likelihood

p(Y, π1:n, zi→j , zi←j |α,B) =
∏
i,j

P (Yij |zi←j , zi→j , B)P (zi→j |πi)P (zi←j |πj)
∏
i∈V

p(πi|α)

(5)
Estimation of this model is done by MCMC Gibbs sampling.

5 Latent Space Model

� Observed graph Y = [yij ]i,j∈V , and optionally pairwise covariates xij ∈ Rd

� Assumed each node i has unobserved location zi ∈ Rk for some k fixed

� Wanted estimate node locations in latent space

� Model
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log odds yij |xij , zi, zj , α, β = ηij = α+βTxij−dij with dij = ||zi−zj || (6)

Alternate model (that can also handle directed graphs) “Projection model”

ηij = α+ βTxij + |zi| cos(zi, zj) (7)

Estimation (assume no x for simplicity)

1. Estimate α, [dij ] by convex minimization Note first that the log-likelihood

l =
∑
i<j

yijηij − ln(1 + eηij ) (8)

is concave in ηij (trivially) and since η = α11T −D (with D = [dij ]), l is
concave in (α,D).

2. Alternatively, use the graph distance (a.k.a. shortest path distance)
to obtain initial estimates of [dij ].

3. Embedding (by MDS) Finding a set of k-dimensional zi variables that
achive the estimated distances is non-trivial (read “Hard”). Multidi-
mensional scaling finds a minimum distortion embedding by a SVD-like
method. For [dij ] graph distances this problem has been intensely studied
in computer science.

4. Relax Local maximization of l w.r.t Z starting from the provious Z’s. This
estimate is denoted ZML.

5. Bayesian estimation Define priors for α, (β), Z. Run Metropolis-Hastings
starting from ZML, with e.g Gaussian proposal distribution around Z.

6. Include Procrustean transform The positions z are identifiable up to trans-
lation and rotation/reflection. Hence, in the MH algorithm, once a new
Zt+1 is accepted, it is transformed by

Zt+1 ← ProcrustesZt Zt+1 with ProcrustesZ Z0 = Z0Z
T (ZZ0Z

T
0 Z

T )−1Z
(9)

(Note that Procrustes is a projection operator which find the element in
the equivalence class of Z that is closest to Z0 in Frobenius norm.)

For the “cosine” version of the model, the projection operator is w.r.t the
equivalence class of rotation/reflection and scaling.

6 Multiplicative Attributes Graph Model (MAGM)

The MAGM assumes that each node has a vector of binary attributes a(i) ∈
{0, 1}K , i ∈ V . Edges are sampled independently, with probability

Pij =

K∏
k=1

Θ
(k)
ak(i)ak(j)

(10)
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where Θ(k) is a 2 × 2 matrix of parameters associated to attribute k. The
probability of sampling ak = 1 is µk (independent of other i’s). Hence, a
MAGM is defined by the parameters (n,K,Θ, µ).

If one interprets ak(i) = 1 as “i belongs to community K”, the MAGM allows
one to represent “overlapping communities”. The simplified MAGM assumes
that all K atrributes share the same parameters µ and Θ. For simplicity, one
denotes α = θ11, β = θ10 = θ01, γ = θ00. A few possibilities offered by this
parameterization are

� α, γ > β: homophily, nodes prefer to attach to similar nodes

� α, γ < β: heterophily, nodes prefer to attach to dissimilar nodes

� α > β > γ: core-periphery, nodes prefer to attach to the core nodes

Comparing this parametrization with large real networks suggests that these
are modeled well by the third model, with α ≈ 0.99 > β ≈ 0.5 + ε > γ ≈ ε
(where ε < 0.1).

Since the probability of an edge given i, a(i)

Pr[Yij = 1|a(i)] = (µα+ (1− µ)β)|a(i)|(µβ + (1− µ)γ)K−|a(i)| (11)

depends exponentially on K, a natural choice is to set

Assumption 1 K = ρ log n. (12)

This model can be seen as an averaged, unnormalized (and non-Bayesian) ver-
sion of the MMSBM. The MAGM was extended to a generative model that
incorporates distributions over visible and latent node attributes (a(i) being
the latent ones), called LMMG (Laten Multigroup Membership Graph model).
The estimation is done by alternate (approximate) maximization of the likeli-
hood (in a way reminiscent of EM); LMMG can potentially be estimated in the
Bayesian framework in a way similar to the MMSBM.

By removing the normalization, and chosing appropriate Θ values, the proba-
bility of edge ij is guaranteed to increase when the two nodes i, j belong the
the intersection of more commmunities.

Under the simple model, with Assumption 1, it can be shown that

� The diameter of the graph is bounded by a constant if n → ∞ if (µβ +
(1− µ)γ)ρ > 1

2

� The graph contains a unique giant component with high probability as
n→∞ iff

(µα+ (1− µ)β)ρµ(µβ + (1− µ)γ)ρ(1−µ) ≥ 1

2
(13)
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A giant component is a connected component of G which contains at least
a constant fraction of the nodes (intuitively, “almost all” the nodes).
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