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Reading MMDS Ch.: 7.3 K-means HTF Ch.:14.3, Murphy Ch.: 11.[1], 11.2.1-3, 11.3, Ch 25
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Paradigms for clustering

What is clustering? Problem and Notation

Informal definition Clustering = Finding groups in data
Notation D = {x1, x2, . . . xn} a data set

n = number of data points
K = number of clusters (K << n)
∆ = {C1,C2, . . . ,CK} a partition of D into disjoint subsets

k(i) = the label of point i
L(∆) = cost (loss) of ∆ (to be minimized)

Second informal definition Clustering = given n data points, separate them into K clusters
Hard vs. soft clusterings

Hard clustering ∆: an item belongs to only 1 cluster
Soft clustering γ = {γki}i=1:n

k=1:K
γki = the degree of membership of point i to cluster k∑

k

γki = 1 for all i

(usually associated with a probabilistic model)
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Paradigms for clustering

(from Nugent and Meila (2010))
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Paradigms for clustering

Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K , shape of clusters)

Data = vectors {xi} in Rd

Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]

Gaussian blurring mean shiftCarreira-Perpinan (2007) [hard]
Data = similarities between pairs of points [Sij ]i,j=1:n, Sij = Sji ≥ 0 Similarity based
clustering

Graph partitioning spectral clustering [hard, K fixed, cost based]
typical cuts [hard non-parametric, cost based]

Affinity propagation [hard/soft non-parametric]
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Paradigms for clustering

Classification vs Clustering

Classification Clustering

Cost (or Loss) L Expectd error many! (probabilistic or not)
Supervised Unsupervised

Generalization Performance on new Performance on current
data is what matters data is what matters

K Known Unknown
“Goal” Prediction Exploration Lots of data to explore!

Stage Mature Still young
of field
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Parametric clustering algorithms (K given) Cost based / hard clustering

Parametric clustering algorithms

Cost based
Single linkage (min spanning tree)
Min diameter

Fastest first traversal (HS initialization)

K-medians
K-means

Model based (cost is derived from likelihood)
EM algorithm

“Computer science”/”Probably correct” algorithms
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Parametric clustering algorithms (K given) Cost based / hard clustering

Minimum diameter clustering

Cost L(∆) = maxk max
i,j∈Ck

||xi − xj ||︸ ︷︷ ︸
diameter

Mimimize the diameter of the clusters
Optimizing this cost is NP-hard

Algorithms
Fastest First Traversal Hochbaum and Shmoys (1985) – a factor 2 approximation for the min cost

For every D, FFT produces a ∆ so that
Lopt ≤ L(∆) ≤ 2Lopt

rediscovered many times
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Parametric clustering algorithms (K given) Cost based / hard clustering

Algorithm Fastest First Traversal
Input Data D = {xi}i=1:n, number clusters K
defines centers µ1:K ∈ D

(many other clustering algorithms use centers)
1 pick µ1 at random from D
2 for k = 2 : K

µk ← argmax
D

distance(xi , {µ1:k−1})

3 for i = 1 : n (assign points to centers)
k(i) = k if µk is the nearest center to xi
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Parametric clustering algorithms (K given) Model based / soft clustering

Model based clustering: Mixture models

Mixture in 1D

Mixture in 2D

The mixture density

f (x) =
K∑

k=1

πk fk (x)

fk (x) = the components of the mixture
each is a density
f called mixture of Gaussians if fk = Normalµk ,Σk

πk = the mixing proportions,∑
k = 1Kπk = 1, πk ≥ 0.

model parameters θ = (π1:K , µ1:K , Σ1:K )

The degree of membership of point i to cluster k

γki
def
= P[xi ∈ Ck ] =

πk fk (x)

f (x)
for i = 1 : n, k = 1 : K

(1)
depends on xi and on the model parameters
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Parametric clustering algorithms (K given) Model based / soft clustering

Model based clustering: Mixture models
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Parametric clustering algorithms (K given) Model based / soft clustering

The Maximum Likelihood Principle

Given data D = {x1:n} sampled i.i.d from some unknown P∗

Model Pθ(x) depends on parameter θ
Problem: How to estimate θ?

Principle: Maximum Likelihood

Likelihood(θ|D) = Pθ(D) =
∏n

i=1 Pθ(xi )

Often convenient to use log-likelihood l(θ)

l(θ) =
n∑

i=1

ln Pθ(xi )

Reason: many Pθ are expressed with exponential functions (e.g the Normal distribution)
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Parametric clustering algorithms (K given) Model based / soft clustering

Criterion for clustering: Max likelihood

denote θ = (π1:K , µ1:K , Σ1:K ) (the parameters of the mixture model)
Define likelihood P[D|θ] =

∏n
i=1 f (xi )

Typically, we use the log likelihood

l(θ) = ln
n∏

i=1

f (xi ) =
n∑

i=1

ln
∑

k

πk fk (xi ) (2)

denote θML = argmax
θ

l(θ)

θML determines a soft clustering γ by (1)
a soft clustering γ determines a θ (see later)
Therefore we can write

L(γ) = −l(θ(γ))
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Parametric clustering algorithms (K given) Model based / soft clustering

Algorithms for model-based clustering

Maximize the (log-)likelihood w.r.t θ

directly - (e.g by gradient ascent in θ)
by the EM algorithm (very popular!)
indirectly, w.h.p. by ”computer science” algorithms

w.h.p = with high probability (over data sets)
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Parametric clustering algorithms (K given) Model based / soft clustering

The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)
Input Data D = {xi}i=1:n, number clusters K

Initialize parameters π1:K ∈ R, µ1:K ∈ Rd , Σ1:K ∈ Rd×d at random1

Iterate until convergence
E step (Optimize clustering) for i = 1 : n, k = 1 : K

γki =
πk fk (x)

f (x)

M step (Optimize parameters) set Γk =
∑n

i=1 γki , k = 1 : K (number of points in cluster k)

πk =
Γk

n
, k = 1 : K

µk =
n∑

i=1

γki

Γk

xi

Σk =

∑n
i=1 γki (xi − µk )(xi − µk )T

Γk

π1:K , µ1:K ,Σ1:K are the maximizers of lc (θ) in (6)∑
k Γk = n

1Σk need to be symmetric, positive definite matrices
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Parametric clustering algorithms (K given) Model based / soft clustering

The EM Algorithm – Motivation

Define the indicator variables

zik =

{
1 if i ∈ Ck

0 if i 6∈ Ck
(3)

denote z̄ = {zki}i=1:n
k=1:K

Define the complete log-likelihood

lc (θ, z̄) =
n∑

i=1

K∑
k=1

zki lnπk fk (xi ) (4)

E [zki ] = γki

Then

E [lc (θ, z̄)] =
n∑

i=1

K∑
k=1

E [zki ][lnπk + ln fk (xi )] (5)

=
n∑

i=1

K∑
k=1

γki lnπk +
n∑

i=1

K∑
k=1

γki ln fk (xi )] (6)
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Parametric clustering algorithms (K given) Model based / soft clustering

If θ known, γki can be obtained by (1)
(Expectation)
If γki known, πk , µk ,Σk can be obtained by separately maximizing the terms of E [lc ]
(Maximization)

Marina Meila (UW) CSE 547/STAT 548 Winter 2022 16 / 37



Parametric clustering algorithms (K given) Model based / soft clustering

Brief analysis of EM

Q(θ, γ) =
n∑

i=1

K∑
k=1

γki lnπk fk (xi )︸ ︷︷ ︸
θ

each step of EM increases Q(θ, γ)
Q converges to a local maximum
at every local maxi of Q, θ ↔ γ are fixed point
Q(θ∗, γ∗) local max for Q ⇒ l(θ∗) local max for l(θ)
under certain regularity conditions θ −→ θML McLachlan and Krishnan (1997)
the E and M steps can be seen as projections Neal and Hinton (1998)

Exact maximization in M step is not essential.
Sufficient to increase Q.
This is called Generalized EM
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Parametric clustering algorithms (K given) Model based / soft clustering

Probablistic alternate projection view of EMNeal and Hinton (1998)

let zi = which gaussian generated i? (random variable), X = (x1:n), Z = (z1:n)
Redefine Q

Q(P̃, θ) = L(θ)− KL(P̃||P(Z |X , θ)

where P(X ,Z |θ) =
∏

i

∏
k P[zi = k]P[xi |θk ]

P̃(Z) is any distribution over Z ,

KL(P(w)||Q(w)) =
∑

w P(w) ln P(w)
Q(w)

the Kullbach-Leibler divergence

Then,
E step maxP̃ Q ⇔ KL(P̃||P(Z |X , θ)

M step maxθ Q ⇔ KL(P(X |Z , θold )||P(X |θ))

Interpretation: KL is “distance”, “shortest distance” = projection
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Parametric clustering algorithms (K given) Model based / soft clustering

The M step in special cases

Note that the expressions for µk ,Σk = expressions for µ,Σ in the normal distribution, with
data points xi weighted by γki

Γk

M step
general case Σk =

∑n
i=1

γki
Γk

(xi − µk )(xi − µk )T

Σk = Σ Σ ←
∑n

i=1

∑K
k=1 γki (xi−µk )(xi−µk )T

n
“same shape & size” clusters

Σk = σ2
k Id σ2

k ←
∑n

i=1 γki ||xi−µk ||2

dΓk

“round” clusters

Σk = σ2Id σ2 ←
∑n

i=1

∑K
k=1 γki ||xi−µk ||2

nd
“round, same size” clusters

Exercise Prove the formulas above

Note also that K-means is EM with Σk = σ2Id , σ
2 → 0 Exercise Prove it
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Parametric clustering algorithms (K given) Model based / soft clustering

More special cases Banfield and Raftery (1993) introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes
(=determinant, trace, e-vectors). The letters below mean: I=unitary (shape, axes), E=equal (for all k), V=unequal

EII: equal volume, round shape (spherical covariance)
VII: varying volume, round shape (spherical covariance)
EEI: equal volume, equal shape, axis parallel orientation (diagonal covariance)
VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)
EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)
VVI: varying volume, varying shape, equal orientation (diagonal covariance)
EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)
EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)
VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)
VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)

(from Nugent and Meila (2010))

Marina Meila (UW) CSE 547/STAT 548 Winter 2022 20 / 37



Parametric clustering algorithms (K given) Model based / soft clustering

EM versus K-means

Alternates between cluster assignments and parameter estimation
Cluster assignments γki are probabilistic
Cluster parametrization more flexible

Converges to local optimum of log-likelihood
Initialization recommended by K-logK method

Modern algorithms with guarantees (for e.g. mixtures of Gaussians)
Random projections
Projection on principal subspace Vempala and Wang (2004)
Two step EM (=K-logK initialization + one more EM iteration)
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Parametric clustering algorithms (K given) Model based / soft clustering

”Computer science” algorithms for mixture models

Assume clusters well-separated (S)
e.g ||µk − µl || ≥ C max(σk , σl )

with σ2
k = max eigenvalue(Σk )

true distribution is mixture
of Gaussians
of log-concave fk ’s (i.e. ln fk is concave function)

then, w.h.p. (n,K , d ,C)
we can label all data points correctly
⇒ we can find good estimate for θ

Even with (S) this is not an easy task in high dimensions
Because fk (µk ) → 0 in high dimensions (i.e there are few points from Gaussian k near µk )
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Parametric clustering algorithms (K given) Model based / soft clustering

Other ”CS” algorithms I

Dasgupta (2000) round, equal sized Gaussian, random projection
Arora and Kannan (2001) arbitrary shaped Gaussian, distances
Achlioptas and McSherry (2005) log-concave, principal subspace projection

Example Theorem (Achlioptas & McSherry, 2005) If data come from K Gaussians,
n >> K(d + log K)/πmin, and

||µk − µl || ≥ 4σk

√
1/πk + 1/πl + 4σk

√
K log nK + K 2

then, w.h.p. 1− δ(d ,K , n), their algorithm finds true labels
Good

theoretical guarantees
no local optima
suggest heuritics for EM K-means

project data on principal subspace (when d >> K)

But

strong assuptions: large separation (unrealistic), concentration of fk ’s (or fk known), K
known
try to find perfect solution (too ambitious)
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Parametric clustering algorithms (K given) Model based / soft clustering

A fundamental result

The Johnson-Lindenstrauss Lemma For any ε ∈ (0, 1] and any integer n, let d ′ be a positive
integer such that d ′ ≥ 4(ε2/2− ε3/3)−1 ln n. Then for any set D of n points in Rd , there is a

map f : Rd → Rd′ such that for all u, v ∈ V ,

(1− ε)||u − v ||2 ≤ ||f (u)− f (v)||2 ≤ (1 + ε)||u − v ||2 (7)

Furthermore, this map can be found in randomized polynomial time.

note that the embedding dimension d ′ does not depend on the original dimension d , but
depends on n, ε
? show that: the mapping f is linear and that w.p. 1− 1

n
a random projection (rescaled) has

this property
their proof is elementary Projecting a fixed vector v on a a random subspace is the same as projecting a random vector v on a fixed

subspace. Assume v = [v1, . . . vd ] with v ∼ i.i.d. and let ṽ = projection of v on axes 1 : d′ . Then E [||ṽ||2 = d′E [v2
j ] = d′

d
E [||v||2]. The

next step is to show that the variance of ||ṽ||2 is very small when d′ is sufficiently large.
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Parametric clustering algorithms (K given) Model based / soft clustering

A two-step EM algorithm Dasgupta and Schulman (2007)

Assumes K spherical gaussians, separation ||µtrue
k − µtrue

k′ ≥ C
√

dσk

1 Pick K ′ = O(K ln K) centers µ0
k at random from the data

2 Set σ0
k = d

2
mink 6=k′ ||µ0

k − µ
0
k′ ||

2, π0
k = 1/K ′

3 Run one E step and one M step =⇒ {π1
k , µ

1
k , σ

1
k}k=1:K ′

4 Compute “distances” d(µ1
k , µ

1
k′ ) =

||µ1
k−µ

1
k′ ||

σ1
k
−σ1

k′
5 Prune all clusters with π1

k ≤ 1/4K ′

6 Run Fastest First Traversal with distances d(µ1
k , µ

1
k′ ) to select K of the remaining centers.

Set π1
k = 1/K .

7 Run one E step and one M step =⇒ {π2
k , µ

2
k , σ

2
k}k=1:K

Theorem For any δ, ε > 0 if d large, n large enough, separation C ≥ d1/4 the Two step EM algorithm
obtains centers µk so that

||µk − µtrue
k || ≤ ||mean(C true

k )− µtrue
k ||+ εσk

√
d
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Parametric clustering algorithms (K given) Model based / soft clustering

Selecting K for mixture models

The BIC (Bayesian Information) Criterion

let θK = parameters for γK

let #θK =number independent parameters in θK
e.g for mixture of Gaussians with full Σk ’s in d dimensions

#θK = K − 1︸ ︷︷ ︸
π1:K

+ Kd︸︷︷︸
µ1:K

+ Kd(d − 1)/2︸ ︷︷ ︸
Σ1:K

define

BIC(θK ) = l(θK )−
#θK

2
ln n

Select K that maximizes BIC(θK )
selects true K for n→∞ and other technical conditions (e.g parameters in compact set)

but theoretically not justified (and overpenalizing) for finite n
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Parametric clustering algorithms (K given) Model based / soft clustering

Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D),

EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)
EEV, 8 Cluster Solution

(from Nugent and Meila (2010))
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Parametric clustering algorithms (K given) Model based / soft clustering

Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D),

EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)
EEV, 8 Cluster Solution

(from Nugent and Meila (2010))
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Parametric clustering algorithms (K given) Model based / soft clustering

Selecting K for hard clusterings

based on statistical testing: the gap statistic (Tibshirani, Walther, Hastie, 2000)
the Krzanowski-Lai (KL), 1985 statistic
X-means Pelleg and Moore (2000) heuristic: splits/merges clusters based on statistical tests
of Gaussianity
Stability methods

Empirical – prove instability
Optimization based – prove stability
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Parametric clustering algorithms (K given) Model based / soft clustering

Empirical Stability methods for choosing K

like bootstrap, or crossvalidation
Idea (implemented by Ben-Hur et al. (2002))
for each K

1 perturb data D → D′
2 cluster D′ → ∆′K
3 compare ∆K ,∆′K . Are they similar?

If yes, we say ∆K is stable to perturbations

Fundamental assumption If ∆K is stable to perturbations then K is the correct number of clusters

these methods are supported by experiments (not extensive)
not directly supported by theory . . . see von Luxburg (2009) for a summary of the area
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Parametric clustering algorithms (K given) Model based / soft clustering

The gap statistic

Idea

for some cost L compare L(∆K ) with its expected value under a null distribution
choose null distribution to have no clusters

Gaussian (fit to data)
uniform with convex support
uniform over K0 principal components of data

null value = EP0
[LK,n] the expected value of the cost of clustering n points from P0 into K clusters

the gap
g(K) = EP0

[LK ,n]− L(∆K ) = L0
K − L(∆K )

choose K∗ corresponding to the largest gap
nice: it can also indicate that data has no clusters
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Parametric clustering algorithms (K given) Model based / soft clustering

Practicalities

L0
K = EP0

[LK ,n] can rarely be computed in closed form
(when P0 very simple)
otherwise, estimate L0

K be Monte-Carlo sampling
i.e generate B samples from P0 and cluster them
if sampling, variance s2

K of estimate L̂0
K must be considered

s2
K is also estimated from the samples

selection rule: K∗ = smallest K such that g(K) ≥ g(K + 1)− sK+1

favored LV (∆) =
∑

k
1
|Ck |

∑
i∈Ck
||xi − µk ||2 ≈ sum of cluster variances
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Parametric clustering algorithms (K given) Model based / soft clustering

The KL statistic

Heuristic
define wK = K 2/d LV (∆K ) (lower is better)
a good K is indicated by ”large” jump between K − 1 and K
they propose

diff (K) = wK−1 − wK

choose K that maximixes relative jump
∣∣∣ diff (K)

diff (K+1)

∣∣∣
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Parametric clustering algorithms (K given) Model based / soft clustering

Stability methods for choosing K

like bootstrap, or crossvalidation
Idea (implemented by Ben-Hur et al. (2002))
for each K

1 perturb data D → D′
2 cluster D′ → ∆′K
3 compare ∆K ,∆′K . Are they similar?

If yes, we say ∆K is stable to perturbations

Fundamental assumption If ∆K is stable to perturbations then K is the correct number of clusters

these methods are supported by experiments (not extensive)
not YET supported by theory . . . see von Luxburg (2009) for a summary of the area
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Parametric clustering algorithms (K given) Model based / soft clustering

A stability based method for model-based clustering

The algorithm of Lange et al. (2004)
1 divide data into 2 halves D1, D2 at random
2 cluster (by EM) D1 → ∆1, θ1
3 cluster (by EM) D2 → ∆2, θ2
4 cluster D1 using θ2 → ∆′1
5 compare ∆1,∆′1
6 repeat B times and average the results

repeat for each K
select K where ∆1,∆′1 are closest on average (or most times)
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Parametric clustering algorithms (K given) Model based / soft clustering

(from von Luxburg (2009))
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Parametric clustering algorithms (K given) Outliers

Clustering with outliers

What are outliers?
let p = proportion of outliers (e.g 5%-10%)
Remedies

mixture model: introduce a K + 1-th cluster with large (fixed) ΣK+1, bound Σk away from 0
K-means and EM

robust means and variances
e.g eliminate smallest and largest pnk/2 samples in mean computation (trimmed mean)
K-medians Charikar and Guha (1999)
replace Gaussian with a heavier-tailed distribution (e.g. Laplace)

single-linkage: do not count clusters with < r points

Is K meaningful when outliers present?
alternative: non-parametric clustering
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