Lecture II - Clustering - Part I: Parametric clustering

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

CSE 547/STAT 548 Winter 2022

Marina Meila (UW)

Paradigms for clustering

Parametric clustering algorithms (K given)

- Cost based / hard clustering
- Model based / soft clustering
- Outliers

Reading MMDS Ch.: 7.3 K-means HTF Ch.:14.3, Murphy Ch.: 11.[1], 11.2.1-3, 11.3, Ch 25

イロト イヨト イヨト イヨト

CSE 547/STAT 548 Winter 2022

3

2/

What is clustering? Problem and Notation

- Informal definition Clustering = Finding groups in data
- Notation $\mathcal{D} = \{x_1, x_2, \dots x_n\}$ a data set
 - *n* = number of **data points**
 - K = number of clusters ($K \ll n$)
 - $\Delta = \{C_1, C_2, \dots, C_K\}$ a partition of \mathcal{D} into disjoint subsets
 - k(i) = the label of point *i*
 - $L(\Delta) = \cos(\cos) \operatorname{of} \Delta$ (to be minimized)
- Second informal definition Clustering = given *n* data points, separate them into K clusters
- Hard vs. soft clusterings
 - \bullet Hard clustering $\Delta:$ an item belongs to only 1 cluster
 - Soft clustering $\gamma = \{\gamma_{ki}\}_{k=1:K}^{i=1:n}$

 γ_{ki} = the degree of membership of point *i* to cluster *k*

$$\sum_k \gamma_{ki} = 1 \quad \text{for all } i$$

イロト イヨト イヨト イヨト

CSE 547/STAT 548 Winter 2022

3

3/

(usually associated with a probabilistic model)

Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints (about K, shape of clusters)

•	Data = vectors	$\{x_i\}$ in \mathbb{R}^d
	Parametric	Cost based [hard]
	(K known)	Model based [soft

Non-parametric	Dirichlet process mixtures [soft]
(<i>K</i> determined	Information bottleneck [soft]
by algorithm)	Modes of distribution [hard]
	Gaussian blurring mean shiftCarreira-Perpinan (2007) [hard]

Data = similarities between pairs of points [S_{ij}]_{i,j=1:n}, S_{ij} = S_{ji} ≥ 0 Similarity based clustering

Graph partitioning	spectral clustering [hard, K fixed, cost based]
	typical cuts [hard non-parametric, cost based]
Affinity propagation	[hard/soft non-parametric]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Classification vs Clustering

	Classification	Clustering
Cost (or Loss) L	Expectd error	many! (probabilistic or not)
	Supervised	Unsupervised
Generalization	Performance on new	Performance on current
	data is what matters	data is what matters
K	Known	Unknown
"Goal"	Prediction	Exploration Lots of data to explore!
Stage	Mature	Still young
of field		

イロト イヨト イヨト イヨト

CSE 547/STAT 548 Winter 2022

э

7/

Parametric clustering algorithms

- Cost based
 - Single linkage (min spanning tree)
 - Min diameter
 - Fastest first traversal (HS initialization)
 - K-medians
 - K-means
- Model based (cost is derived from likelihood)
 - EM algorithm
 - "Computer science" /" Probably correct" algorithms

Minimum diameter clustering

• Cost
$$L(\Delta) = \max_{k} \max_{\substack{i,j \in C_k}} ||x_i - x_j||$$

diameter

- · Mimimize the diameter of the clusters
- Optimizing this cost is NP-hard
- Algorithms

• Fastest First Traversal Hochbaum and Shmoys (1985) – a factor 2 approximation for the min cost For every \mathcal{D} , FFT produces a Δ so that

$$L^{opt} \leq L(\Delta) \leq 2L^{opt}$$

イロト イヨト イヨト イヨト

CSE 547/STAT 548 Winter 2022

э

8/

rediscovered many times

Algorithm Fastest First Traversal

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters K defines centers $\mu_{1:K} \in \mathcal{D}$

(many other clustering algorithms use centers)

- **()** pick μ_1 at random from \mathcal{D}
- **(a)** for k = 2 : K

 $\mu_k \leftarrow \operatorname{argmax}_{\mathcal{D}} \operatorname{distance}(x_i, \{\mu_{1:k-1}\})$

• for i = 1 : n (assign points to centers)

k(i) = k if μ_k is the nearest center to x_i

Model based clustering: Mixture models

• The mixture density

$$f(x) = \sum_{k=1}^{K} \pi_k f_k(x)$$

• $f_k(x)$ = the **components** of the mixture

- · each is a density
- f called mixture of Gaussians if $f_k = Normal_{\mu_k, \Sigma_k}$

< □ > < □ > < □ > < □ > < □ >

CSE 547/STAT 548 Winter 2022

• π_k = the mixing proportions,

$$\sum_k = 1^K \pi_k = 1, \ \pi_k \ge 0.$$

• model parameters $\theta = (\pi_{1:K}, \mu_{1:K}, \Sigma_{1:K})$

Model based clustering: Mixture models

• The mixture density

$$f(x) = \sum_{k=1}^{K} \pi_k f_k(x)$$

• $f_k(x)$ = the **components** of the mixture

- · each is a density
- f called mixture of Gaussians if $f_k = Normal_{\mu_k, \Sigma_k}$
- π_k = the mixing proportions, $\sum_k = 1^K \pi_k = 1, \ \pi_k \ge 0.$
- model parameters $\theta = (\pi_{1:K}, \mu_{1:K}, \Sigma_{1:K})$
- The degree of membership of point *i* to cluster *k*

$$\gamma_{ki} \stackrel{\text{def}}{=} P[x_i \in C_k] = \frac{\pi_k f_k(x)}{f(x)} \text{ for } i = 1: n, k = 1: K$$
(1)

• depends on x_i and on the model parameters

イロト イボト イヨト イヨト

The Maximum Likelihood Principle

- Given data $\mathcal{D} = \{x_{1:n}\}$ sampled i.i.d from some unknown P^*
- Model $P_{\theta}(x)$ depends on parameter θ
- Problem: How to estimate θ ?
- Principle: Maximum Likelihood

$$\mathsf{Likelihood}(\theta|\mathcal{D}) = P_{\theta}(\mathcal{D}) = \prod_{i=1}^{n} P_{\theta}(x_i)$$

• Often convenient to use log-likelihood $I(\theta)$

$$I(\theta) = \sum_{i=1}^{n} \ln P_{\theta}(x_i)$$

• Reason: many P_{θ} are expressed with exponential functions (e.g the Normal distribution)

Criterion for clustering: Max likelihood

- denote $\theta = (\pi_{1:K}, \mu_{1:K}, \Sigma_{1:K})$ (the parameters of the mixture model)
- Define likelihood $P[\mathcal{D}|\theta] = \prod_{i=1}^{n} f(x_i)$
- Typically, we use the log likelihood

$$I(\theta) = \ln \prod_{i=1}^{n} f(x_i) = \sum_{i=1}^{n} \ln \sum_{k} \pi_k f_k(x_i)$$
(2)

イロト イヨト イヨト イヨト

CSE 547/STAT 548 Winter 2022

3

- denote $\theta^{ML} = \operatorname{argmax}_{\theta} I(\theta)$
- θ^{ML} determines a soft clustering γ by (1)
- a soft clustering γ determines a θ (see later)
- Therefore we can write

$$L(\gamma) = -I(\theta(\gamma))$$

Algorithms for model-based clustering

Maximize the (log-)likelihood w.r.t θ

- directly (e.g by gradient ascent in θ)
- by the EM algorithm (very popular!)
- indirectly, w.h.p. by "computer science" algorithms

w.h.p = with high probability (over data sets)

The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)

Input Data $\mathcal{D} = \{x_i\}_{i=1:n}$, number clusters *K* tialize parameters $\pi_{1:K} \in \mathbb{R}, \ \mu_{1:K} \in \mathbb{R}^d, \ \Sigma_{1:K} \in \mathbb{R}^{d \times d}$ at random¹ terate until convergence

E step (Optimize clustering) for i = 1 : n, k = 1 : K

$$\gamma_{ki} = \frac{\pi_k f_k(x)}{f(x)}$$

M step (Optimize parameters) set $\Gamma_k = \sum_{i=1}^n \gamma_{ki}$, k = 1 : K (number of points in cluster k)

$$\pi_{k} = \frac{\Gamma_{k}}{n}, \quad k = 1 : K$$

$$\mu_{k} = \sum_{i=1}^{n} \frac{\gamma_{ki}}{\Gamma_{k}} x_{i}$$

$$\Sigma_{k} = \frac{\sum_{i=1}^{n} \gamma_{ki} (x_{i} - \mu_{k}) (x_{i} - \mu_{k})^{T}}{\Gamma_{k}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで CSE 547/STAT 548 Winter 2022

14

• $\pi_{1:K}, \mu_{1:K}, \Sigma_{1:K}$ are the maximizers of $l_c(\theta)$ in (6) • $\sum_{k} \Gamma_{k} = n$

 $^{{}^{1}\}Sigma_{k}$ need to be symmetric, positive definite matrices

The EM Algorithm – Motivation

• Define the indicator variables

$$z_{ik} = \begin{cases} 1 & \text{if } i \in C_k \\ 0 & \text{if } i \notin C_k \end{cases}$$
(3)

denote $\bar{z} = \{z_{ki}\}_{k=1:K}^{i=1:n}$ • Define the complete log-likelihood

$$l_{c}(\theta, \bar{z}) = \sum_{i=1}^{n} \sum_{k=1}^{K} z_{ki} \ln \pi_{k} f_{k}(x_{i})$$
(4)

•
$$E[z_{ki}] = \gamma_{ki}$$

• Then

$$E[l_{c}(\theta, \bar{z})] = \sum_{i=1}^{n} \sum_{k=1}^{K} E[z_{ki}] [\ln \pi_{k} + \ln f_{k}(x_{i})]$$
(5)

$$= \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} \ln \pi_{k} + \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} \ln f_{k}(x_{i})]$$
(6)

イロト イヨト イヨト イヨト

CSE 547/STAT 548 Winter 2022

E 99€

- If θ known, γ_{ki} can be obtained by (1) (Expectation)
- If γ_{ki} known, π_k, μ_k, Σ_k can be obtained by separately maximizing the terms of $E[I_c]$ (Maximization)

イロト 不得 トイヨト イヨト

CSE 547/STAT 548 Winter 2022

э

17

Brief analysis of EM

$$Q(\theta,\gamma) = \sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} \ln \underbrace{\pi_k f_k(x_i)}_{\theta}$$

- each step of EM increases $Q(\theta, \gamma)$
- Q converges to a local maximum
- \bullet at every local maxi of $\textit{Q},\,\theta\,\leftrightarrow\,\gamma$ are fixed point
- $Q(\theta^*,\gamma^*)$ local max for $Q \Rightarrow I(\theta^*)$ local max for $I(\theta)$
- under certain regularity conditions $\theta \longrightarrow \theta^{ML}$ McLachlan and Krishnan (1997)
- the E and M steps can be seen as projections Neal and Hinton (1998)
- Exact maximization in M step is not essential. Sufficient to increase Q. This is called Generalized EM

イロト 不得 トイヨト イヨト

CSE 547/STAT 548 Winter 2022

-

18

Probablistic alternate projection view of EMNeal and Hinton (1998)

- let z_i = which gaussian generated *i*? (random variable), $X = (x_{1:n})$, $Z = (z_{1:n})$
- Redefine Q

$$Q(\tilde{P}, \theta) = L(\theta) - KL(\tilde{P}||P(Z|X, \theta))$$

where $P(X, Z|\theta) = \prod_i \prod_k P[z_i = k]P[x_i|\theta_k]$ $\tilde{P}(Z)$ is any distribution over Z, $KL(P(w)||Q(w)) = \sum_w P(w) \ln \frac{P(w)}{Q(w)}$ the Kullbach-Leibler divergence

Then,

- E step $\max_{\tilde{P}} Q \Leftrightarrow KL(\tilde{P}||P(Z|X,\theta))$
- M step $\max_{\theta} Q \Leftrightarrow KL(P(X|Z, \theta^{old})||P(X|\theta))$
- Interpretation: KL is "distance", "shortest distance" = projection

The M step in special cases

• Note that the expressions for μ_k, Σ_k = expressions for μ, Σ in the normal distribution, with data points x_i weighted by $\frac{\gamma_{ki}}{\Gamma_k}$

> ◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ CSE 547/STAT 548 Winter 2022

19

	M step
general case	$\Sigma_k = \sum_{i=1}^n \frac{\gamma_{ki}}{\Gamma_k} (x_i - \mu_k) (x_i - \mu_k)^T$
$\Sigma_k = \Sigma$ "same shape & size" clusters	$\boldsymbol{\Sigma} \leftarrow \frac{\sum_{i=1}^{n} \sum_{k=1}^{K} \gamma_{ki} (x_{i} - \mu_{k}) (x_{i} - \mu_{k})^{T}}{n}$
$\Sigma_k = \sigma_k^2 I_d$	$\sigma_k^2 \leftarrow \frac{\sum_{i=1}^n \gamma_{ki} \mathbf{x}_i - \mu_k ^2}{d\Gamma_k}$
"round" clusters	
$\sum_{k} = \sigma^2 I_d$	$\sigma^2 \leftarrow \frac{\sum_{i=1}^n \sum_{k=1}^K \gamma_{ki} x_i - \mu_k ^2}{nd}$
round, same size clusters	

Exercise Prove the formulas above

• Note also that K-means is EM with $\Sigma_k = \sigma^2 I_d, \ \sigma^2 \to 0$ Exercise Prove it

More special cases Banfield and Raftery (1993) introduce the following description for a covariance matrice in terms of volume, shape, alignment with axes (=determinant, trace, e-vectors). The letters below mean: l=unitary (shape, axes), E=equal (for all k), V=unequal

- EII: equal volume, round shape (spherical covariance)
- VII: varying volume, round shape (spherical covariance)
- EEI: equal volume, equal shape, axis parallel orientation (diagonal covariance)
- VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)
- EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)
- VVI: varying volume, varying shape, equal orientation (diagonal covariance)
- EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)
- EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)
- VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)
- VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)

(from Nugent and Meila (2010))

Marina Meila (UW)

20

イロン イ団 とく ヨン イヨン

EM versus K-means

- Alternates between cluster assignments and parameter estimation
- Cluster assignments γ_{ki} are probabilistic
- Cluster parametrization more flexible

• Converges to local optimum of log-likelihood Initialization recommended by K-logK method

• Modern algorithms with guarantees (for e.g. mixtures of Gaussians)

- Random projections
- Projection on principal subspace Vempala and Wang (2004)
- Two step EM (=K-logK initialization + one more EM iteration)

< □ > < 同 > < 回 > < 回 >

CSE 547/STAT 548 Winter 2022

イロト イヨト イヨト イヨト

CSE 547/STAT 548 Winter 2022

"Computer science" algorithms for mixture models

- Assume clusters well-separated
 - e.g $||\mu_k \mu_l|| \geq C \max(\sigma_k, \sigma_l)$
 - with $\sigma_k^2 = \max \operatorname{eigenvalue}(\Sigma_k)$
- true distribution is mixture
 - of Gaussians
 - of log-concave f_k 's (i.e. In f_k is concave function)
- then, w.h.p. (n, K, d, C)
 - we can label all data points correctly
 - $\bullet \ \Rightarrow \ {\rm we \ can \ find \ good \ estimate \ for \ } \theta$

Even with (S) this is not an easy task in high dimensions

Because $f_k(\mu_k) \to 0$ in high dimensions (i.e there are few points from Gaussian k near μ_k)

(S)

Other "CS" algorithms I

- Dasgupta (2000) round, equal sized Gaussian, random projection
- Arora and Kannan (2001) arbitrary shaped Gaussian, distances
- Achlioptas and McSherry (2005) log-concave, principal subspace projection

Example Theorem (Achlioptas & McSherry, 2005) If data come from K Gaussians, $n >> K(d + \log K)/\pi_{min}$, and

$$||\mu_k - \mu_l|| \ge 4\sigma_k \sqrt{1/\pi_k + 1/\pi_l} + 4\sigma_k \sqrt{K\log nK + K^2}$$

then, w.h.p. $1 - \delta(d, K, n)$, their algorithm finds true labels **Good**

- theoretical guarantees
- no local optima
- suggest heuritics for EM K-means
 - project data on principal subspace (when d >> K)

But

• strong assuptions: large separation (unrealistic), concentration of f_k 's (or f_k known), K known

イロト 不得 トイヨト イヨト

CSE 547/STAT 548 Winter 2022

23

• try to find perfect solution (too ambitious)

A fundamental result

The Johnson-Lindenstrauss Lemma For any $\varepsilon \in (0, 1]$ and any integer n, let d' be a positive integer such that $d' \geq 4(\varepsilon^2/2 - \varepsilon^3/3)^{-1} \ln n$. Then for any set \mathcal{D} of n points in \mathbb{R}^d , there is a map $f : \mathbb{R}^d \to \mathbb{R}^{d'}$ such that for all $u, v \in V$,

$$(1-\varepsilon)||u-v||^{2} \le ||f(u)-f(v)||^{2} \le (1+\varepsilon)||u-v||^{2}$$
(7)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CSE 547/STAT 548 Winter 2022

24

Furthermore, this map can be found in randomized polynomial time.

- note that the embedding dimension d' does not depend on the original dimension d, but depends on n, ε
- ? show that: the mapping f is linear and that w.p. $1 \frac{1}{n}$ a random projection (rescaled) has this property
- their proof is elementary Projecting a fixed vector v on a a random subspace is the same as projecting a random vector v on a fixed subspace. Assume $v = [v_1, \ldots, v_d]$ with $v \sim i.i.d.$ and let $\tilde{v} = \text{projection of } v$ on axes 1 : d'. Then $E[||\tilde{v}||^2 = d'E[v_j^2] = \frac{d'}{d}E[||v||^2]$. The next step is to show that the variance of $||\tilde{v}||^2$ is very small when d' is sufficiently large.

A two-step EM algorithm Dasgupta and Schulman (2007)

Assumes K spherical gaussians, separation $||\mu_k^{true} - \mu_{k'}^{true} \ge C\sqrt{d\sigma_k}$

- Pick $K' = \mathcal{O}(K \ln K)$ centers μ_k^0 at random from the data
- (a) Set $\sigma_k^0 = \frac{d}{2} \min_{k \neq k'} ||\mu_k^0 \mu_{k'}^0||^2$, $\pi_k^0 = 1/K'$
- **(a)** Run one E step and one M step $\Longrightarrow \{\pi_k^1, \mu_k^1, \sigma_k^1\}_{k=1:K'}$
- Compute "distances" $d(\mu_k^1, \mu_{k'}^1) = \frac{||\mu_k^1 \mu_{k'}^1||}{\sigma_k^1 \sigma_{k'}^1}$
- **③** Prune all clusters with $\pi_k^1 \leq 1/4K'$
- Run Fastest First Traversal with distances d(μ¹_k, μ¹_{k'}) to select K of the remaining centers. Set π¹_k = 1/K.
- $\textbf{0} \ \, {\rm Run \ one \ } {\rm E \ step \ and \ one \ } {\rm M \ step} \Longrightarrow \{\pi_k^2, \mu_k^2, \sigma_k^2\}_{k=1:K}$

eorem For any $\delta, \varepsilon > 0$ if d large, n large enough, separation $C \ge d^{1/4}$ the Two step EM algorithm obtains centers μ_k so that

$$||\mu_k - \mu_k^{true}|| \le ||\text{mean}(C_k^{true}) - \mu_k^{true}|| + \varepsilon \sigma_k \sqrt{d}$$

イロン イ団 とく ヨン イヨン

CSE 547/STAT 548 Winter 2022

э

26

Selecting K for mixture models

The BIC (Bayesian Information) Criterion

- let θ_K = parameters for γ_K
- let $\#\theta_K$ =number independent parameters in θ_K
 - e.g for mixture of Gaussians with full Σ_k 's in d dimensions

$$\#\theta_{K} = \underbrace{K-1}_{\pi_{1:K}} + \underbrace{Kd}_{\mu_{1:K}} + \underbrace{Kd(d-1)/2}_{\Sigma_{1:K}}$$

define

$$BIC(\theta_{K}) = I(\theta_{K}) - \frac{\#\theta_{K}}{2} \ln n$$

- Select K that maximizes $BIC(\theta_K)$
- selects true K for $n \to \infty$ and other technical conditions (e.g parameters in compact set)
- but theoretically not justified (and overpenalizing) for finite n

Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D), EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)

(from Nugent and Meila (2010))

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Number of Clusters vs. BIC EII (A), VII (B), EEI (C), VEI (D), EVI (E), VVI (F), EEE (G), EEV (H), VEV (I), VVV (J)

EEV, 8 Cluster Solution

イロト イヨト イヨト イヨ

CSE 547/STAT 548 Winter 2022

28

(from Nugent and Meila (2010))

Marina Meila (UW)

Selecting K for hard clusterings

- based on statistical testing: the gap statistic (Tibshirani, Walther, Hastie, 2000)
- the Krzanowski-Lai (KL), 1985 statistic
- X-means Pelleg and Moore (2000) heuristic: splits/merges clusters based on statistical tests of Gaussianity

- Stability methods
 - Empirical prove instability
 - Optimization based prove stability

Empirical Stability methods for choosing K

- like bootstrap, or crossvalidation
- Idea (implemented by Ben-Hur et al. (2002))
 - for each K

 - (2) cluster $\mathcal{D}' \to \Delta'_K$
 - compare Δ_K, Δ'_K. Are they similar?
 If yes, we say Δ_K is stable to perturbations

Fundamental assumption If Δ_K is stable to perturbations then K is the correct number of clusters

- these methods are supported by experiments (not extensive)
- not directly supported by theory ... see von Luxburg (2009) for a summary of the area

The gap statistic

Idea

- for some cost L compare $L(\Delta_K)$ with its expected value under a null distribution
 - · choose null distribution to have no clusters
 - Gaussian (fit to data)
 - uniform with convex support
 - uniform over K₀ principal components of data
 - null value = $E_{P_0}[L_{K,n}]$ the expected value of the cost of clustering *n* points from P_0 into *K* clusters
- the gap

$$g(K) = E_{P_0}[L_{K,n}] - L(\Delta_K) = L_K^0 - L(\Delta_K)$$

イロト イヨト イヨト イヨト

CSE 547/STAT 548 Winter 2022

3

- choose K^* corresponding to the largest gap
- nice: it can also indicate that data has no clusters

Practicalities

- $L_{K}^{0} = E_{P_{0}}[L_{K,n}]$ can rarely be computed in closed form (when P_{0} very simple)
- otherwise, estimate L⁰_K be Monte-Carlo sampling i.e generate B samples from P₀ and cluster them
- if sampling, variance s_K^2 of estimate \hat{L}_K^0 must be considered s_K^2 is also estimated from the samples
- selection rule: $K^* = \text{smallest } K$ such that $g(K) \geq g(K+1) s_{K+1}$
- favored $L^V(\Delta) = \sum_k \frac{1}{|C_k|} \sum_{i \in C_k} ||x_i \mu_k||^2 \approx \text{sum of cluster variances}$

イロト 不得 トイヨト イヨト 二日

The KL statistic

- Heuristic
- define $w_{\mathcal{K}} = \mathcal{K}^{2/d} L^{\mathcal{V}}(\Delta_{\mathcal{K}})$ (lower is better)
- a good K is indicated by "large" jump between K 1 and K
- they propose

$$diff(K) = w_{K-1} - w_K$$

choose K that maximixes relative jump $\left| \frac{diff(K)}{diff(K+1)} \right|$

34

Stability methods for choosing K

- like bootstrap, or crossvalidation
- Idea (implemented by Ben-Hur et al. (2002))

for each K

- $\ \, \bullet \ \, \bullet \ \, \bullet \ \, \bullet \ \, {\mathcal D}'$
- (2) cluster $\mathcal{D}' \to \Delta'_K$
- Socompare Δ_K , Δ'_K . Are they similar? If yes, we say Δ_K is stable to perturbations

Fundamental assumption If Δ_K is stable to perturbations then K is the correct number of clusters

- these methods are supported by experiments (not extensive)
- not YET supported by theory ... see von Luxburg (2009) for a summary of the area

イロト イヨト イヨト イヨト

CSE 547/STAT 548 Winter 2022

э

35

A stability based method for model-based clustering

• The algorithm of Lange et al. (2004)

- ()divide data into 2 halves $\mathcal{D}_1, \mathcal{D}_2$ at random
- 2 cluster (by EM) $\mathcal{D}_1 \rightarrow \Delta_1, \theta_1$
- **③** cluster (by EM) D_2 → $Δ_2$, $θ_2$
- **(**) compare Δ_1, Δ'_1
- o repeat B times and average the results
- repeat for each ${\cal K}$
- select K where Δ₁, Δ'₁ are closest on average (or most times)

Fig. 2.1 Normalized stability scores. Left plots: Data points from a uniform density on $[0,1]^2$. Right plots: Data points from a mixture of four well-separated Gaussians in \mathbb{R}^2 . The first row always shows the unnormalized instability Instab for K = 2, ..., 15. The second row shows the instability Instab_{norm} obtained on a reference distribution (uniform distribution). The third row shows the normalized stability Instab_{norm}.

イロト イヨト イヨト

CSE 547/STAT 548 Winter 2022

36

(from von Luxburg (2009))

Clustering with outliers

- What are outliers?
- let p = proportion of outliers (e.g 5%-10%)
- Remedies
 - mixture model: introduce a K + 1-th cluster with large (fixed) Σ_{K+1} , bound Σ_k away from 0

- K-means and EM
 - robust means and variances
 - e.g eliminate smallest and largest $pn_k/2$ samples in mean computation (trimmed mean)
 - K-medians Charikar and Guha (1999)
 - replace Gaussian with a heavier-tailed distribution (e.g. Laplace)
- single-linkage: do not count clusters with < r points
- Is K meaningful when outliers present?
 - alternative: non-parametric clustering

References

- Achlioptas, D. and McSherry, F. (2005). On spectral learning of mixtures of distributions. In Auer, P. and Meir, R., editors, 18th Annual Conference on Learning Theory, COLT 2005, pages 458–471, Berlin/Heidelberg. Springer.
- Arora, S. and Kannan, R. (2001). Learning mixtures of arbitrary gaussians. In STOC '01: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pages 247–257, New York, NY, USA. ACM Press.
- Banfield, J. D. and Raftery, A. E. (1993). Model-based gaussian and non-gaussian clustering. Biometrics, 49:803–821.
- Ben-Hur, A., Elisseeff, A., and Guyon, I. (2002). A stability based method for discovering structure in clustered data. In *Pacific Symposium on Biocomputing*, pages 6–17.
- Carreira-Perpinan, M. A. (2007). Gaussian mean shift is an EM algorithm. *IEEE Trans. on Pattern Analysis and Machine Intelligence*, 29(5):767–776.
- Charikar, M. and Guha, S. (1999). Improved combinatorial algorithms for the facility location and k-median problems. In 40th Annual Symposium on Foundations of Computer Science, pages 378–388.
- Dasgupta, S. (2000). Experiments with random projection. In UAI '00: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 143–151, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.
- Dasgupta, S. and Gupta, A. (2002). An elementary proof of a theorem of johnson and lindenstrauss. *Algorithms*, 22:60–65.
- Dasgupta, S. and Schulman, L. (2007). A probabilistic analysis of em for mixtures of separated, spherical gaussians. *Journal of Machine Learnig Research*, 8:203–226.

Marina Meila (UW)

CSE 547/STAT 548 Winter 2022 37

- Lange, T., Roth, V., Braun, M. L., and Buhmann, J. M. (2004). Stability-based validation of clustering solutions. Neural Comput., 16(6):1299-1323.
- McLachlan, G. J. and Krishnan, T. (1997). The EM algorithm and extensions. Wiley, New York, NY.
- Neal, R. M. and Hinton, G. E. (1998). A view of the em algorithm that justifies incremental, sparse, and other variants. In Jordan, M. I., editor, Learning in Graphical Models, NATO Science series, pages 355-368. Kluwer Academic Publishers.
- Nugent, R. and Meila, M. (2010). Statistical Methods in Molecular Biology, chapter An Overview of Clustering Applied to Molecular Biology. Humana Press, Springer.
- Pelleg, D. and Moore, A. (2000). X-means: Extending K-means with efficient estimation of the number of clusters. In Bratko, I. and Džeroski, S., editors, Proceedings of the 17th International Conference on Machine Learning, pages 727–734, San Francisco, CA. Morgan Kaufmann.
- Vempala, S. and Wang, G. (2004). A spectral algorithm for learning mixtures of distributions. Journal of Computer Systems Science, 68(4):841–860.
- von Luxburg, U. (2009). Clustering stability: An overview. Foundations and Trends in Machine Learning, 2(3):253-274.

イロト 不得 トイヨト イヨト 二日

CSE 547/STAT 548 Winter 2022