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Paradigms for clustering

What is clustering? Problem and Notation

Informal definition Clustering = Finding groups in data
Notation D = {x1, x2, . . . xn} a data set

n = number of data points
K = number of clusters (K << n)
∆ = {C1,C2, . . . ,CK} a partition of D into disjoint subsets

k(i) = the label of point i
L(∆) = cost (loss) of ∆ (to be minimized)

Second informal definition Clustering = given n data points, separate them into K clusters
Hard vs. soft clusterings

Hard clustering ∆: an item belongs to only 1 cluster
Soft clustering γ = {γki}i=1:n

k=1:K
γki = the degree of membership of point i to cluster k∑

k

γki = 1 for all i

(usually associated with a probabilistic model)
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Paradigms for clustering

Clustering Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K , shape of clusters)

Data = vectors {xi} in Rd

Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]

Gaussian blurring mean shift? [hard] Level sets of distribution [hard]
Data = similarities between pairs of points [Sij ]i,j=1:n, Sij = Sji ≥ 0 Similarity based
clustering

Graph partitioning spectral clustering [hard, K fixed, cost based]
typical cuts [hard non-parametric, cost based]

Affinity propagation [hard/soft non-parametric]
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Paradigms for clustering

Classification vs Clustering

Classification Clustering

Cost (or Loss) L Expectd error many! (probabilistic or not)
Supervised Unsupervised

Generalization Performance on new Performance on current
data is what matters data is what matters

K Known Unknown
“Goal” Prediction Exploration Lots of data to explore!

Stage Mature Still young
of field
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Methods based on non-parametric density estimation

Methods based on non-parametric density estimation

Idea The clusters are the isolated peaks in the (empirical) data density
group points by the peak they are under
some outliers possible
K = 1 possible(no clusters)
shape and number of clusters K determined by algorithm
structural parameters

smoothness of the density estimate
what is a peak

Algorithms
peak finding algorithms Mean-shift algorithms
level sets based algorithms

Nugent-Stuetzle, Support Vector clustering

Information Bottleneck ?
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Methods based on non-parametric density estimation

Kernel density estimation

Input data D ⊆ Rd

Kernel function K(z)
parameter kernel width h (is a smoothness parameter)

Output f (x) a probability density over Rd

f (x) =
1

nhd

n∑
i=1

K

(
x − xi

h

)

f is sum of Gaussians centered on each xi
f is smoother (less variation) if h larger
caveat: dimension d can’t be too large
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Methods based on non-parametric density estimation

The kernel function

Example K(z) = 1
(2π)d/2 e

−||z||2/2, z ∈ Rd is the Gaussian kernel

In general

K() should represent a density on Rd , i.e K(z) ≥ 0 for all z and
∫
K(z)dz = 1

K() symmetric around 0, decreasing with ||z||
In our case, K must be differentiable
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Methods based on non-parametric density estimation

Mean shift algorithms

Idea find points with ∇f (x) = 0

Assume K(z) = e−||z||
2/2/
√

2π Gaussian kernel

∇f (x) = −
1

nhd

n∑
i=1

K(
x − xi

h
)(x− xi )/h

Local max of f is solution of implicit equation

x =

∑n
i=1 xiK( x−xi

h
)∑n

i=1 K( x−xi
h

)︸ ︷︷ ︸
the mean shiftm(x)

Algorithm Simple Mean Shift
Input Data D = {xi}i=1:n, kernel K(z), h

1 for i = 1 : n
1 x ← xi
2 iterate x ← m(x) until convergence to mi

2 group points with same mi in a cluster
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Methods based on non-parametric density estimation

Remarks

mean shift iteration guaranteed to converge to a max of f
computationally expensive
a faster variant...

Algorithm Mean Shift (Comaniciu-Meer)
Input Data D = {xi}i=1:n, kernel K(z), h

1 select q points {xj}j=1:q = Dq ⊆ D
that cover the data well

2 for j ∈ Dq

1 x ← xj
2 iterate x ← m(x) until convergence to mj

3 group points in Dq with same mj in a cluster
4 assign points in D \ Dq to the clusters by the nearest-neighbor method

k(i) = k(argmin
j∈Dq

||xi − xj ||)
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Methods based on non-parametric density estimation

[Gaussian blurring mean shift]

Idea

like Simple Mean Shift but points are shifted to new locations
the density estimate f changes
becomes concentrated around peaks very fast

Algorithm Gaussian Blurrring Mean Shift (GBMS)
Input Data D = {xi}i=1:n, Gaussian kernel K(z), h

1 Iterate until STOP
1 for i = 1 : n compute m(xi )
2 for i = 1 : n, xi ← m(xi )

Remarks

all xi converge to a single point
⇒ need to stop before convergence
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Methods based on non-parametric density estimation

Empirical stopping criterion ?

define eti = ||x ti − x t−1
i || the change in xi at t

define H(et) the entropy of the histogram of {eti }
STOP when

∑n
i=1 e

t
i /n <tol OR |H(et)− H(et−1)| <tol’

Convergence rate If true f Gaussian, convergence is cubic

||x ti − x∗|| ≤ C ||x t−1
i − x∗||3

very fast!!
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Methods based on non-parametric density estimation

The Nugent-Stuetzle algorithm

Algorithm Nugent-Stuetzle
Input Data D = {xi}i=1:n, kernel K(z)

1 Compute KDE f (x) for chosen h
2 for levels 0 < l1 < l2 < . . . < lr < . . . < lR ≥ supx f (x)

1 find level set Lr = {x | f (x) ≥ lr} of f
2 if Lr disconnected then each connected component is a cluster → (Cr,1,Cr,2, . . .Cr,Kr )

Output clusters {(Cr,1,Cr,2, . . .Cr,Kr )}r=1:R
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Methods based on non-parametric density estimation

Remarks

every cluster Cr,k ⊆ some cluster Cr−1,k′

therefore output is hierarchical clustering
some levels can be pruned (if no change, i.e. Kr = Kr−1)
algorithm can be made recursive, i.e. efficient
finding level sets of f tractable only for d = 1, 2
for larger d , Lr = {xi ∈ D | f (xi ) ≥ lr}
to find connected components

for i 6= j ∈ Lr

if f (txi + (1− t)xj ) ≥ lr for t ∈ [0, 1]
then k(i) = k(j)

confidence intervals possile by resampling
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Methods based on non-parametric density estimation

Cluster tree with 13 leaves (8 clusters, 5 artifacts)

(from ?)
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Methods based on non-parametric density estimation

Chaudhuri-Dasgupta Algorithm

Uses k-nearest neighbor graphs (filtration)
Parameters k (nearest neigbhors) and α ∈ [1, 2]
for r ≥ 0, Gr = (Vr ,Er ) with

xi ∈ Vr iff distance to k-nn of xi ≤ r
(xi , xj ) ∈ Er iff ||xi − xj || ≤ αr

Consistency Theorem For any ε (separation parameter) and δ (confidence), α ∈ [
√

2, 2] (graph

density), if k = C log2(1/δ) d log n
ε2

for any two clusters C ,C ′ in cluster tree, there exists a level r so that C ∩ D,C ′ ∩ D are clusters
at level r
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Methods based on non-parametric density estimation

The K-nn density estimator

The K-nn density estimator
Let Br (x) be the (closed) ball of radius r centered at x

If |Br (x i ) ∩ D| = k then p̂(x i ) = 1
rnωn

k
n

is an estimate of the density at x i

ωn = πn/2/Γ(n/2 + 1) is the volume of the unit ball in Rn

intuitively, the ball of radius r contains k/n probability mass
Note that the density p̂ is not required to integrate to 1
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Methods based on non-parametric density estimation

DBScan

Introduced with no proof, but widely used. Implicitly based on the K-nn estimator
Parameters r radius, m minimum number points
Definitions core Q = {x i ∈ D, with Br (x i ) ∩ D| ≥ m}
border B = {x i ∈ D \ Q, so that x i ∈ Br (x j ), x j ∈ Q}
outliers (noise) O = D \ (Q ∪ B)

Algorithm idea
Construct directed graph G with edges (i , j) where x i ∈ Q, j ∈ Br (x i )
The graph edges between core points are undirected/symmetric, the other are from core to
border
Clusters are determined by the connected components of the graph restricted to Q.
The border points are assigned to a cluster containing x j so that x i ∈ Br (x j ), x j ∈ Q Note
that this assignment is not unique!

Heuristic algorithm estimates r ,m
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Methods based on non-parametric density estimation

[Chaudhuri-Dasgupta Algorithm]

Consistency Theorem For any ε (separation parameter) and δ (confidence), α ∈ [
√

2, 2] (graph density), if

k = C log2(1/δ) d log n

ε2

for any two clusters C ,C ′ in cluster tree, there exists a level r so that C ∩ D,C ′ ∩ D are clusters at level r

r depends on λ =”bridge” between C ,C ′ (and σ > 0 “tube” width)

rdωdλ =
k

n
+ . . . confidence term

it follows that the needed sample size n at level λ

n = O
(

d

λε2(σ/2)dωd
log

d

λε2(σ/2)dωd

)
this sample complexity n is almost tight
for α <

√
2 sample complexity is exponential in d

New results [Kent, B. P., Rinaldo, A. and Verstynen, T. 2013]

Remark: algorithm(s) can be applied in any metric space
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Methods based on non-parametric density estimation

[Support Vector (SV) clustering]

Idea same as for Nugent-Stuetzle, but use kernelized density estimator instead of KDE

Algorithm SV
Input data D, parameters q kernel width, p ∈ (0, 1) proportion of outliers

1 construct a 1-class SVM with parameters q, C = 1/np
this is equivalent to enclosing the data in a sphere in feature space
for any x its distance from center of sphere is

R2(x) = K(x , x)− 2
∑
j

αjK(x , xj ) +
∑
i,j

K(xi , xj )

for xi support vector, R(xi ) = R (same for all)
2 for all pairs i , j = 1 : n

i, j in same cluster if segment [i, j] is within sphere with radius R in feature space
practically, test if R(txi + (1− t)xj ) < R for t on a grid over [0,1]
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Methods based on non-parametric density estimation

Remarks

the kernel used by SV is K(x , x ′) = e−q||x−x′||2

q controls boundary smoothness
SV’s lie on cluster boundaries, ”margin error” points lie outside clusters (are outliers)

SV theory
margin errors

n
→ 1

nC
= p for large n

hence p controls the proportion of outliers
p, q together control K
p larger, q smaller ⇒ K smaller
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Model-based: Dirichlet process mixture models

The Dirichlet distribution

Z ∈ {1 : r} a discrete random variable, let θj = Pz (j), j = 1, . . . r .
Multinomial distribution Probability of i.i.d. sample of size N from Pz

P(z1,...n) =
r∏

j=1

θ
nj
j

where nj = #the value j is observed, j = 1, . . . r
n1:r are the sufficient statistics of the data.
The Dirichlet distribution is defined over domain of θ1,... r , with real parameters N′1,... r > 0
by

D(θ1,... r ; n′1,... r ) =
Γ(
∑

j n
′
j )∏

j Γ(n′j )

∏
j

θ
n′j−1

j

where Γ(p) =
∫∞

0 tp−1e−tdt.
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Model-based: Dirichlet process mixture models

Dirichlet process mixtures

Model-based
generalization of mixture models to

infinite K
Bayesian framework

denote θk = parameters for component fk
assume fk (x) ≡ f (x , θk ) ∈ {f (x , θ)}
assume prior distributions for parameters g0(θ)
prior with hyperparameter α > 0 on the number of clusters
very flexible model
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Model-based: Dirichlet process mixture models

A sampling model for the data

Example: Gaussian mixtures, d = 1, σk = σ fixed
θ = µ
prior for µ is Normal(0, σ2

0 Id )
Sampling process

for i = 1 : n sample xi , k(i) as follows

denote {1 : K} the clusters after step i − 1
define nk the size of cluster k after step i − 1

1

k(i) =

{
k w.p

nk
i−1+α

, k = 1 : K

K + 1 w.p α
i−1+α

(1)

2 if k(i) = K + 1 sample µi ≡ µK+1 from Normal(0, σ2
0 )

3 sample xi from Normal(µk(i), σ
2)

can be shown that the distribution of x1:n is interchangeable (does not depend on data
permutation)
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Model-based: Dirichlet process mixture models

The hyperparameters

σ0 controls spread of centers
should be large

α controls number of cluster centers
α large ⇒ many clusters

cluster sizes non-uniform (larger clusters attract more new points)
many single point clusters possible

General Dirichlet mixture model

cluster densities {f (x , θ)}
parameters θ sampled from prior g0(θ, β)
cluster membership k(i) sampled as in (1)
xi sampled from f (x , θk(i))
Model Hyperparameters α, β
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Model-based: Dirichlet process mixture models

Clustering with Dirichlet mixtures

The clustering problem

α, g0, β, {f } given
D given
wanted θ1:n (not all distinct!)
note:

θ1:n determines a hard clustering ∆
the posterior of θ1:n given the data determines a soft clustering via P(xi | k) ∝

∫
f (xi |θk )gk (θk )dθk

Estimating θ1:n cannot be solved in closed form
Usually solved by MCMC (Markov Chain Monte Carlo) sampling
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Model-based: Dirichlet process mixture models

Clustering with Dirichlet mixtures via MCMC

MCMC estimation for Dirichlet mixture
Input α, g0, β, {f }, D
State cluster assignments k(i), i = 1 : n,

parameters θk for all distinct k
Iterate 1 for i = 1 : n (reassign data to clusters)

1 remove i from its cluster (hence
∑

k nk = n − 1)
2 resample k(i) by

k(i) =

{
existing k w.p ∝ nk

n−1+α
f (xi , θk )

new cluster w.p α
n−1+α

∫
f (xi , θ)g0(θ)dθ

(2)

3 if k(i) is new label, sample a new θk(i) ∝ g0f (xi , θ)

2 for k ∈ {k(1 : n)} (resample cluster parameters)

1 sample θk from posterior gk (θ) ∝ g0(θ, β)
∏

i∈Ck
f (xi , θ)

gk can be computed in closed form if g0 is conjugate prior

Output a state with high posterior
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Model-based: Dirichlet process mixture models

Summary: Parametric vs. non-parametric

Parametric clustering

Optimizes a cost L
Most costs are NP-hard to optimize
Assumes more detailed knowledge of cluster shapes
Assumes K known (But there are wrapper methods to select K)
Gets harder with larger K
Older, more used and better studied

Non-parametric clustering

Variety of paradigms
density-based methods have no cost function
(Max Likelihood: non-parametric mixture models)
Bayesian: Dirichlet Process Mixtures (samples from posterior of k(1 : n), {θk} given D)

Do not depend critically on initialization
K and outliers selected automatically, naturally
Require hyperparameters (= smoothness parameters)

Marina Meila (UW) CSE 547/STAT 548 Winter 2022 28 / 31



Model-based: Dirichlet process mixture models

When to use

Parametric
shape of clusters known
K not too large or known
clusters of comparable sizes

Non-parametric (density based)
shape of clusters arbitrary
K large or many outliers
clusters sizes in large range (a few large clusters and many small ones)
dimension d small (except for SV)
lots of data

Dirichlet Process mixtures
shape of clusters known
clusters sizes in large range
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Appendix

Notation

||x − y || Euclidean distance for x, y ∈ Rd , ||x − y || =
√∑d

j=1(xj − yj )2
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Appendix

Links

Yee Whye Teh’s tutorial on DP Mixtures http://mlg.eng.cam.ac.uk/tutorials/07/ywt.pdf
Lecture on exponential family models http:
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