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Hierarchical clustering

14

§ Agglomerative (bottom up):
§ Initially, each point is a cluster
§ Repeatedly combine the two 

“nearest” clusters into one
§ Divisive (top down):

§ Start with one cluster and recursively split it

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hierarchical clustering

What is hierarchical clustering?

Clusters have cluster structure

Represented by
Dendrogram
Cluster Tree
(only from KDE)

Dendrogram

Cluster Tree
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Hierarchical clustering

Hierarchical clustering – Overview

(Dendrograms)

Agglomerative (bottom up)
Single linkage

based on Minimum Spanning Tree
O(n2 log n)
sensitive to outliers

Heuristics – average linkage
Agglomerative K-means

Loss L(∆K ) = 0 for K = n
When K ← K − 1 (two clusters merged), L increases
For K = n, n − 1, . . . 2, iteratively merge the 2 clusters that minimize increase of L
O(n3) – too expensive for big data

Divisive (bottom down)
Recursively split D into K = 2 clusters
almost any clustering algorithm (e.g. K-means, min diameter)
notable example Spectral clustering (later)

Advantages

most important splits are first
can stop after only a few splits
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Hierarchical clustering
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Data:
o … data point
x … centroid Dendrogram

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hierarchical clustering

Cluster tree

λ-tree Defined by the level sets of the KDE
α-tree Defined by the number of points in r -ball around xi

i.e. by level sets of the nearest neighbor density estimator
more robust [Yen-Chi Chen “Generalized cluster tree and singular measures”, 2019]
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Comparing clusterings

Requirements for a distance

Depend on the application

Applies to any two partitions of the same data set
Makes no assumptions about how the clusterings are obtained
Values of the distance between two pairs of clusterings comparable under the weakest
possible assumptions
Metric (triangle inequality) desirable
understandable, interpretable
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Comparing clusterings

The confusion matrix

Let ∆ = {C1:K}, ∆′ = {C ′
1:K ′}

Define nk = |Ck |, n′k′ = |C ′
k′ |

mkk′ = |Ck ∩ C ′
k′ |, k = 1 : K , k ′ = 1 : K ′

note:
∑

k mkk′ = n′
k′ ,

∑
k′ mkk′ = nk ,

∑
k,k′ mkk′ = n

The confusion matrix M ∈ RK×K ′ is

M = [mkk′ ]
k′=1:K ′
k=1:K

all distances and comparison criteria are based on M
the normalized confusion matrix P = M/n

pkk′ =
mkk′

n

The normalized cluster sizes pk = nk/n, p
′
k′ = n′

k′/n are the marginals of P

pk =
∑
k′

pkk′ pk′ =
∑
k

pkk′
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Comparing clusterings

Matrix Representations

matrix reprentations for ∆
unnormalized (redundant) representation

X̃ik =

{
1 i ∈ Ck

0 i 6∈ Ck
for i = 1 : n, k = 1 : K

normalized (redundant) representation

Xik =

{
1/
√
|Ck | i ∈ Ck

0 i 6∈ Ck
for i = 1 : n, k = 1 : K

therefore XT
k Xk′ = δ(k, k′), X orthogonal matrix

Xk = column k of X
normalized non-redundant reprentation

XK is determined by X1:K−1

hence we can use Y ∈ Rn×(K−1) orthogonal representation
intuition: Y represents a subspace (is an orthogonal basis)

K centers in Rd , d ≥ K determine a K − 1 dimesional subspace plus a translation
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Comparing clusterings Distances between clusterings: Misclassification error, VI

The Misclassification Error (ME) distance

Define the Misclassification Error (ME) distance dME

dME = 1−max
π

K∑
k=1

pk,π(k) π ∈ {all K−permutations}, K ≤ K ′w.l.o.g

Interpretation: treat the clusterings as classifications, then minimize the classification error
over all possible label matchings
Or: ndME is the Hamming distance between the vectors of labels, minimized over all possible
label matchings
can be computed in polynomial time by Max bipartite matching algorithm (also known as
Hungarian algorithm)
Is a metric: symmetric, ≥ 0, triangle inequality

dME (∆1,∆2) + dME (∆1,∆3) ≥ dME (∆2,∆3)

easy to understand (very popular in computer science)
dME ≤ 1− 1/K
bad: if clusterings not similar, or K large, dME is coarse/indiscriminative
recommended: for small K
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Comparing clusterings Distances between clusterings: Misclassification error, VI

The Variation of Information (VI) distance
Clusterings as random variables

Imagine points in D are picked randomly, with equal probabilities
Then k(i), k ′(j) are random variables
with Pr [k] = pk , Pr [k, k ′] = pkk′
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Comparing clusterings Distances between clusterings: Misclassification error, VI

Incursion in information theory I

Entropy of a random variable/clustering H∆ = −
∑

k pk ln pk
0 ≤ H∆ ≤ lnK
Measures uncertainty in a distribution (amount of randomness)
Joint entropy of two clusterings

H∆,∆′ = −
∑
k,k′

pkk′ ln pkk′

H∆′,∆ ≤ H∆ + H∆′ with equality when the two random variables are independent
Conditional entropy of ∆′ given ∆

H∆′|∆ = −
∑
k

pk
∑
k′

pkk′

pk
ln

pkk′

pk

Measures the expected uncertainty about k ′ when k is known
H∆′|∆ ≤ H∆′ with equality when the two random variables are independent
Mutual information between two clusterings (or random variables)

I∆,∆ = H∆ + H∆′ − H∆′,∆

= H∆′ − H∆′|∆

Measures the amount of information of one r.v. about the other
I∆,∆ ≥ 0, symmetric. Equality iff r.v.’s independent
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Comparing clusterings Distances between clusterings: Misclassification error, VI

The VI distance

Define the Variation of Information (VI) distance

dVI (∆,∆′) = H∆ + H∆′ − 2I∆′,∆

= H∆|∆′ + H∆′|∆

Interpretation: dVI is the sum of information gained and information lost when labels are
switched from k() to k ′()
dVI symmetric, ≥ 0
dVI obeys triangle inequality (is a metric)

Other properties

Upper bound
dVI ≤ 2 lnKmax if K ,K ′ ≤ Kmax ≤

√
n

(asymptotically attained)
dVI ≤ ln n over all partitions (attained)
Unbounded! and grows fast for small K
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Comparing clusterings Indices: Rand, Jaccard, NMI, . . .

Other criteria and desirable properties

Comparing clustering by indices of similarity i(∆,∆′)
from statistics (Rand, adjusted Rand, Jaccard, Fowlkes-Mallows ...)
Normalized Mutual Information
range=[0,1], with i(∆,∆′) = 1 for ∆ = ∆′

the properties of these indices not so good
any index can be transformed into a “distance” by d(∆,∆′) = 1− i(∆,∆′)

Other desirable properties of indices and distances between clusterings
n-invariance
locality
convex additivity
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Comparing clusterings Indices: Rand, Jaccard, NMI, . . .

Rand, Jaccard and Fowlkes-Mallows

Define N11 = # pairs which are together in both clusterings, N12 = # pairs together in ∆,
separated in ∆′, N21 (conversely), N22 =#number pairs separated in both clusterings

Rand index = N11+N22
#pairs

Jaccard index = N11
#pairs

Fowlkes-Mallows = Precision× Recall

all vary strongly with K . Thereforek, Adjusted indices used mostly

adj(i) =
i − ī

max(i)− ī
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Comparing clusterings Indices: Rand, Jaccard, NMI, . . .

Normalized Mutual Information (NMI)

iNMI (∆,∆′) =
I∆′,∆

H∆ + H∆′
(1)

Takes values between [0,1]
No probabilistic interpretaion

Variant
I∆′,∆

H∆,∆′
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