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@ Motivation — finding similar items
© Distance functions

© Locality Sensitive Hashing
@ Hash functions and hash tables
@ What is Locality Sensitive Hashing
@ LSH functions from random projections
o Approximate r-neighbor retrival by LSH

@ K-D trees, Ball trees etc.
© Big data and the curse of dimensionality

© Finding similar documents
@ Min-Hash

Reading MMDS Ch.: 3. Finding similar items HTF Ch.:, Murphy Ch.: Reading: Lecture 16 notes
by Moses Charikar, section 3.2; optionally Cormen, Leiserson, Rivest, Stein “Introduction to
Algorithms”, chapter on hashing.

Thanks to mmds.com (Leskovec, Rajaraman and Ullman) and randorithms.com (Ben Coleman)
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Motivation — finding similar items

[Hays and Efros, SIGGRAPH 2007]

Scene Completion Problem
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Motivation — finding similar items

[Hays and Efros, SIGGRAPH 2007]

Scene Completion Problem

10 hearest neiI hbors from a collection of 20,000 imataves
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Motivation — finding similar items

[Hays and Efros, SIGGRAPH 2007]

Scene Completion Problem
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Motivation — finding similar items

A Common Metaphor

Many problems can be expressed as
finding “similar” sets:
Find near-neighbors in high-dimensional space
Examples:
Pages with similar words
For duplicate detection, classification by topic

Customers who purchased similar products
Products with similar customer sets

Images with similar features — -
Users who visited similar websites
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The problem: finding neighbors in high dimensions

o Given D of size n in R?, and given a query point x find the neighbors of x in D
o here: all neighbors in radius r
e sometimes the k nearest-neighbors
e sometimes just 1 neighbor
@ query point can be in D, e.g. in clustering, dimension reduction, or not (e.g. retrieval, image
completion)
n < 10% and d > 102
Brute force (suppose we need neighbors of all x; € D)

o compute time O(n’d) — Too large!
o Can we do it exactly in subquadratic time? Probably NO
o [if the SETH (Strong Exponential Time Conjecture) holds]
Rephrased problem: find approximate nearest neighbors

o e.g. if x has neighbor x’ € D at distance r, return an x’’ € D at distance < cr
o with ¢ > 1 some constant, and w.h.p.}, usually measured by a confidence &
o we measure performance of algorithm as function of (c, r, §)

Lwith high probability
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Distance functions

Distance and similarity functions

Distances
o Euclidean x,x’ € RY, (6 x") = |Ix = x| = /XTx+ (x)Tx" —2xTx/
L1 (Manhattan) x,x’ € RY d;1(x,x") = ||x — x'||1
o Hamming x,x’ € {0,1}9 dp(x,x’) = xTx+ (xX')Tx' —2xTx" = #x + #x' — 2#(x N x")

Similarities
xTx'
(xTx)((x") ")
d _ #(xNx') _ xTx’'
o Jaccard x,x’ € {0,1}¢ J(x,x") = F X)) XTx ()T — X

o Note that if x, x’ € {0,1}9 they can be seen as indicator functions for subsets of 1 : n.
Hence xTx’ = #(x N x') represents the cardinality of the intersection of sets given by x, x’
o All distances above are metrics.

e cosine x,x’ € R or {0,1}9 cos(x,x’) =
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(TS ASEL SNV PRIl Hash functions and hash tables

Hash functions and hash codes

Let the data space be RY, and assume some fixed probability measure on this space.

o A family of hash functions is a set H = {h: R? — {0,1} } with the following properties
@ For each h, Pr[h(x) = 1] = %
@ The binary random variables defined by the functions in H are mutually independent. (Or, if H is
not finite, a “not too large” random sample of such random variables is mutually independent.)

o Let hy.x be a mutually independent subset of H. We call
g(x) = [m(x) ha(x) ... h(x)] € {0, 1} (1)

the hash code of x.

o Note that the codes g(x) are (approximately) uniformly distributed; the probability of any
g € {0,1}* is about 2%(

@ Useful hash functions must be fast to compute.
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Locality Sensitive Hashing Hash functions and hash tables
Hash tables

o A hash table 7 is a data structure in which points in R? can be stored in such a way that
@ All points with the same code g are in the same bin denoted by 7,. The table need not use space
for empty bins.
@ Given any value g € {0,1}*, we can obtain a point in 7 or find if Ty = 0 in constant time
(independent of the number of points n stored in T).
Some versions of hash tables return all points in 7, e.g., as a list, in constant time.
@ It is usually assumed that storing a point x with given code g(x) in a hash table is also constant time.
@ Hence, using a hash table to store an x or to retrieve something, involves computing k hash
functions, then a constant-time access to 7.
o When x’ # x and g(x’) = g(x) we call this a collision. In some applications (not of interest
to us), collisions are to be avoided.
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What is Locality Sensitve Hashing
Hashing vs. Locality Sensitive Hashing (LSH)

Elements LSH Table Hash Table
° L(x)| Collisions [|H(x)| Collisions
® o HX
° 1 (eoe 1 e @@
o o LX
°, 2 (X 2 lescoe
® ° 3 (o000 00®|| 3 (000OGO
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[RIEINWVESCUEIOVCRCEENNEA  What is Locality Sensitive Hashing

Locality Sensitive Hash Functions and Codes

@ A hash function h is locality sensitive iff for any x, x’ € R?
Prlh(x) = h(x")] > p1 when ||x —x|| < r (2)
Prlh(x) = h(x")] < p» when ||x — x|| > cr (3)

with p1, p2, r and ¢ > 1 fixed parameters (of the family #) and p1 > po.
o W.l.o.g., weset py = pg for some p < 1.
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LSH functions

A locality sensitive h makes a weak distinction between points that are close in space vs.
points that are far away. A hash code g from locality sensitive hash functions sharpens this
distinction, in the sense that the probability of far away points colliding can be made
arbitrarily small.

Phad = Prlg(x) = g(x')|lIx = x'|| > cr] < pj (4)

Assume x is not in T; for any x’ € D which is far from x,the probability that x’ collides with
X is < Ppad-
We construct T so that pp,g < % for n the sample size. For this we need Exercise (in

Homework 1)

Inn 1
k = = Ppad < — (5)
—Inps n

Suppose x” € T is “close” to x. What is the probability that g(x’) = g(x)?

1

K k

Pgood = P1 = Pg = ; (6)
This is the probability that the bin Tg(x) contains x’.

h depends on the distance d
h and g sometimes depend on r

Marina Meila (UW) 1l NN in High Dimensions CSE 547 /STAT 548 Winter 2022

14



Locality Sensitive Hashing LSH functions from random projections

How to find good hash functions?

o We need large families of h functions
that are easy to generate randomly
and fast to compute for a given x

@ Generic method to obtain them: random projections
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Locality Sensitive Hashing [lR

SH functions from random projections

LSH function for Hamming distance

o H ={h; =bitj(x), j=1:d}
@ a random h € H samples a random bit of x
o Collision probability

pilxx) = 1 HED gy

Marina Meila (UW) 111 NN in High Dim

To bit sample, randomly choose an index
This is sensitive to Hamming distance

x [1]Jo]o[oJ1]1]o]1[1]1]o]1]
oJoJ1]Jolo[1]1]o]1]

h(x)=0 hm(x)=1
h() =0 h() =0
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LSH function for Euclidean and L1 distance

@ project x on a random line, round to
multiples of r

wTx r':.
hs() =122 @) e

o If w ~ Normal(0, l4), hash function for
Euclidean distance

o If w ~ Cauchy(0,1)9, hash function for L1
distance

@ Collision probability (p = 2 for Normal,
p =1 for Cauchy)

pi(x,x") = deterministic function of||x—x||»
(9)
@ Hash function space H, is infinite, and
depends on r
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Locality Sensitive Hashing LSH functions from random projections

Analysis of projection on a random vector

Data are x € RY as usual.
Define hy p : R? — Z by

WTX
() = |52 (10)

with r > 0 a width parameter, w € R, b € [0, r).
o Intuitively, x is " projected” on w?, then the result is quantized into bins of width r, with a
grid origin given by b.

The family of hash functions is #, = {hy, b, w € R, be[0,r)}.
Sampling H,: w ~ Normal(0, l4), b ~ uniform[0, r).

o Because the Normal distribution is a stable distribution, this ensures that w x is distributed as
Normal(0, ||x||?). Exercise Verify this

o Hence w'x — w'x’ is distributed as Normal(0, ||[x — x'||?). Exercise Verify this

o Moreover, if hash functions are sampled independently from #,,(and nothing is known about x)

then hy, p(x), hyt b (x) are independent random variables. Exercise Prove this

2w is not necessarily unit length
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Locality Sensitive Hashing LSH functions from random projections

LSH function for angles

@ project x on a random line, take the sign °
hu,b(x) = sign(w’ x) (11) RN
0 y ®
e Collision probability o
0
0(x, x' Ep=1-—:
b)) = 1= 20X () HEEITT
T o _ D
Z-—
@ Hash function space H is infinite
o (110 [111]
! ® | hx)=1 °
Y,
o"’z °
~o . A
~._ o w2 °
. °
h(x) = —1 o S
4 [oooy ® [001]
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Locality Sensitive Hashing LSH functions from random projections
Clustering LSH

H={h=

k(x), for some clustering of data}

@ h takes values in 1: K

@ This is a data dependent hash function
family

o Clustering can be K-means, min-diameter,
hieararchical ...

@ No theoretical guarantees, but works well in

practice
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Approximate r-neighbor retrival by LSH

Input D set of n points, L mutually independent hash codes gy.; of dimension k.

lexing Construct L hash tables T1L, each storing D.
trieval Given x
@ compute g(x)
Q forj=1,2,...L
. -
if the bin 7/, # 0
@ return some (all) x’ from it.
@ stop if a single neighbor is wanted.
Some analysis. We set L = n”
o Indexing time o knP*!
@ Retrieval time oc kn”
@ Space used oc knPt1

@ For each x’ € D close to x, the probability that x’ is NOT returned for any j € 1: L is
1 1
1-=)"=~= (13)
nP e
This can be made arbitrarily small by multiplying L with a constant.
o For each x’ € D far from x, the probability that x’ is NOT returned for any j € 1: L is

1-p
1., 1\ /" 1
1— ) =~ (= ~—=1 14
( N) (e) e0 (14)

@ Hence, we are almost sure not to return a far point, and have a significant probability to
return a close pomt when one exists, if no pomts neither far nor close are-in the-data.=This dis
Manna Meila (UV\/) : III NN in ngh Dimensions T CSE’ 547/STAT 548 Wnter 2022
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K-D trees, Ball trees etc

Heuristics for neighbors in high-dimensions

o typically a form of hierarchical clustering

o K-D tree for low dimensions (but observed R I —
to work well in high dimensions too) R |
o Ball tree for high dimensions * Pl
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K-D Tree
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K-D Tree
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K-D Tree
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K-D Tree
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Ball Tree
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Ball Tree
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K-D trees, Ball trees etc

Ball Tree
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K-D trees, Ball trees etc

Ball Tree
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K-D trees, Ball trees etc

K-D Tree construction

node k:
° ;’:‘g‘, & min, max of box in each dimension
@ jmax, Amax = argmax, maxj-{bjmax — bjﬁ“i", j =1:d} the largest dimension of the box
@ Ny, Xy, ... number of points in node, mean, other statistics

e if k is leaf then Dy an array of the data under this node
@ pointers py, I, re to parent and children nodes

Algorithm SpLIT-NODE(k)

It is assumed that k is leaf, hence Iy, r, =null
@ Create new leaf nodes I, ry children of k and set k as their parent
O Let b = (57 4 b7)/2
© Create empty sets D, , Dy,
Q Fori=1:n
o if x; < b* then move x; from Dy to D/k; else move x; to D’k

»Jmax
e update Ny s Ny and the other statistics as needed

max, min
Tk
(5] Update A/k,maxyjlk,max and Ark,maxvjrk,max

o update b

Marina Meila (UW) 1l NN in High Dimensions CSE 547 /STAT 548 Winter 2022
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Searching for r-neighbors with K-D Tree

o Denote by Nodey the d-dimensional box [bi", b3X] x ... [bTiN, pmax]
@ When is Br(x) N Nodey # 0?7

e x close to a corner: closest corner is ¢ = [min{|b}"in = x|, |6 = X[ }j=1:d

o x is interior or close to a face: x; € [b"", b"™] if j # jo, and x; € [b["" — r, b]"™ + 1] for j = jo
o When is Node, C B(x)?

o furthest corner is ¢’ = [ma><{|bj'v“i" = x|, |61 = xj[}]j=1:a

o if [[x — ¢’|| < r then all Node, C B,(x)

Retrieving all points in D N B,(x)

o Recursively from the root, examine Node
If Br(x) N Nodex = @, return with no output
Else
If Node, C B(x) output all Dy and return
Else examine children of k

Marina Meila (UW) 11 NN in High Dimensions CSE 547 /STAT 548 Winter 2022
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Finding similar documents

Task: Finding Similar Documents

Goal: Given a large number (N in the millions or
billions) of documents, find “near duplicate” pairs
Applications:
Mirror websites, or approximate mirrors
Don’t want to show both in search results
Similar news articles at many news sites
Cluster articles by “same story”
Problems:
Many small pieces of one document can appear
out of order in another
Too many documents to compare all pairs

Documents are so large or so many that they cannot
fit in main memory

1. Leskovee, & Rajaraman, 1. Ullman: Mining of Massive Datasets, https/feww.mmds.org a

Marina Meila (UW) 1l NN in High Dimensions CSE 547 /STAT 548 Winter 2022

27



Finding similar documents

3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on
pairs of signatures likely to be from
similar documents

= Candidate pairs!

1. Leskover, A Rajaraman, 1. Ullman: Mining of Massive Datasets, httos/ fwww.mme a
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Finding similar documents

The Big Picture

Candidate
X pairs:
Docu- Locality- those pairs
ment Sensitive | ¢ signatures
Sl that we need
to test for
The set Signatures: similarity
of strings short integer
of length k vectors that
that appear represent the
in the doc- sets, and
ument reflect their
similarity

Marina Meila (UW) 1l NN in High Dimensions CSE 547 /STAT 548 Winter 2022
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Finding similar documents

The set

of strings
of length k
that appear
in the doc-
ument

Shingling

Step 1: Convert documents to sets
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Finding similar documents

Documents as High-Dim Data

Step 1: Shingling: Convert documents to sets

Simple approaches:
Document = set of words appearing in document
Document = set of “important” words
Don’t work well for this application. Why?

Need to account for ordering of words!
A different way: Shingles!

1. Leskover, A Rajaraman, 1. Ullman: Mining of Massive Datasets, httos/ fwww.mme 2
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Finding similar documents

Define: Shingles

A k-shingle (or k-gram) for a document is a
sequence of k tokens that appears in the doc

Tokens can be characters, words or something
else, depending on the application

Assume tokens = characters for examples

Example: k=2; document D, = abcab

Set of 2-shingles: S$(D,) = {ab, bc, ca}
Option: Shingles as a bag (multiset), count ab
twice: §’(D,) = {ab, bc, ca, ab}

1. Leskover, A Rajaraman, 1. Ullman: Mining of Massive Datasets, httos/ fwww.mme 3
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Finding similar documents

Compressing Shingles

To compress long shingles, we can hash them
to (say) 4 bytes
Represent a document by the set of hash
values of its k-shingles

Idea: Two documents could (rarely) appear to have

shingles in common, when in fact only the hash-
values were shared

Example: k=2; document D,= abcab
Set of 2-shingles: S(D,) = {ab, bc, ca}
Hash the singles: h(D,) = {1, 5, 7}

1. Leskover, A Rajaraman, 1. Ullman: Mining of Massive Datasets, httos/ fwww.mme
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Finding similar documents

Similarity Metric for Shingles

Document D, is a set of its k-shingles C,=S(D,)
Equivalently, each document is a
0/1 vector in the space of k-shingles

Each unique shingle is a dimension

Vectors are very sparse
A natural similarity measure is the
Jaccard similarity:

sim(Dy, D;) = |GG, |/|C UG, |

CeD

1. Leskover, A Rajaraman, 1. Ullman: Mining of Massive Datasets, httos/ fwww.mme
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Finding similar documents

Motivation for Minhash/LSH

Suppose we need to find near-duplicate
documents among N = 1 million documents

Naively, we would have to compute pairwise
Jaccard similarities for every pair of docs
N(N —1)/2 = 5*10*1 comparisons

At 10° secs/day and 10° comparisons/sec,
it would take 5 days

For N = 10 million, it takes more than a year...

1. Leskover, A Rajaraman, 1. Ullman: Mining of Massive Datasets, httos/ fwww.mme
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Finding similar documents

Motivation for Minhash/LSH

Suppose we need to find near-duplicate
documents among N = 1 million documents

Naively, we would have to compute pairwise
Jaccard similarities for every pair of docs
N(N —1)/2 = 5*10*1 comparisons

At 10° secs/day and 10° comparisons/sec,
it would take 5 days

For N = 10 million, it takes more than a year...

1. Leskover, A Rajaraman, 1. Ullman: Mining of Massive Datasets, httos/ fwww.mme

11l NN in High Dimensions CSE 547 /STAT 548 Winter 2022

36



Min-Hash — Motivation

Denote S = { space of k-shingles (k-grams) }
|S| = |alphabet/* HUGE!

o document — ¢ € {0,1}IS! sparse!

o Similarity( document, document’ )= J(c, c¢’) Jaccard

Jeey - Hene)
’ #(cuc’)
e Wanted compress ¢ — x, so that
o x € Z- with L < |S]
o Jaccard is preserved (approximately), i.e.
’
x| = X
Je, ') ~ M (15)
(fraction of equal elements in signatures approximates Jaccard)
o x is called signature of ¢
o How? Min-Hash
@ Why not random bit hashing?
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Finding similar documents Min-Hash

Note: Another (equivalent) way is to
store row indexes: i3} s 5

2 3 1 3
6 4 6 4

Min-Hashing Example

2d element of the permutation
is the first to mapto a 1

Permutatio Inputyétrix (Shing

ocuments . .
) Signature matrix M

— ___ 7
=16 A N 2 |1 |2 |2
»
3] [2[la 2 _|o [0 Ja 2 |2 |4 8
2
1 0 0 1
2117 . 1 |2 1 |2
6(13(2] [0 |2 |o
SjEd( A w /
1/(6]|6 0 1 0 1 \4”‘ element of the permutation
1 —— is the first to map to a 1
5(|171l2] [ [0 |2 |o
4115115 1 o] 1 (o]

1. Leskover, A Rajaraman, 1. Ullman: Mining of Massive Datasets, https/fwww.mmds.org %
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Finding similar documents Min-Hash

The Min-Hash Property Z Z

Choose a random permutation 7 11

Claim: Pr[h,(C,) = h,(C,)] = sim(C,, C,) oo

Why? o |1
Let X be a doc (set of shingles), ye X is a shingle 1 o
Then: Pr[n(y) = min(w(X))] = 1/|X|

It is equally likely that any y € X is mapped to the min element
Let y be s.t. nt(y) = min(n(C,UC,))
Then either:  w(y) = min(n(C;)) ify € C;, or  0Oneof the two
. . cols had to have
n(y) = min(n(C,)) ify € G, 1 at position y
So the prob. that both are true is the prob.y € C; N C,
Pr[min(m(C,))=min(r(C,))]=| C;NC, | /| UG, | = sim(Cy, C,)

1. Leskover, A Rajaraman, 1. Ullman: Mining of Massive Datasets, httos/ fwww.mme 7
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Finding similar documents EMVIGEZEE]

Min-Hash high-level summary

@ Choose a family of hash functions H = {h.}

o where 7 are permutatons of S
e hr(c) € {0,1,...]|S| -1}
o hy(c) = number 0’s at the beginning of 7(c) = location of 1st 1 in 7(c) (zero-indexed)

@ so that
Prlhz(c) = hx(c')] = J(c,c’) for all m, c,c’(Min-Hash Property)
@ Choose L random permutations 7.,
@ Map c vectors to x by
x(c) = [hry(c), hry(c), ... hmy(c)]
o Approximate J(c, c’) by averaging

L
1
Here) = T2 e
=1
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Finding similar documents Min-Hash

Min-Hashing Example

Permutation ® Input matrix (Shingles x Documents . .
P ¢ 9 ) Signature matrix M

i i i : ° 1 ° 2 1 2 1

0 1 0 1
6/[3]|[2] |0 |2 |0 |2 |:>
1l(6]l6] [o 2 [o [1 | similarities:
e[ |[1] 13 24 12 34
i li 19 ° Col/Col| 0.75 0.75 0 ©
&(|15]5] [2 [0 |2 |o Sig/Sig| 0.67 1.00 0 ©
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Finding similar documents EMVIGEZEE]

Finding similar documents: Summary

Input Documents = lists of characters, length large, n large
Shingling documents — binary vectors
k-shingle space S large, c representation high-dimensional
Min-Hash Binary vector ¢ — signature x, dim(x) = L < dim(c)
preserves Jaccard similarity
LSH on signatures x
find neighbors in sub-quadratic time
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