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Reading MMDS Ch.: 3. Finding similar items HTF Ch.:, Murphy Ch.: Reading: Lecture 16 notes
by Moses Charikar, section 3.2; optionally Cormen, Leiserson, Rivest, Stein “Introduction to
Algorithms”, chapter on hashing.
Thanks to mmds.com (Leskovec, Rajaraman and Ullman) and randorithms.com (Ben Coleman)
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Motivation – finding similar items

The problem: finding neighbors in high dimensions

Given D of size n in Rd , and given a query point x find the neighbors of x in D
here: all neighbors in radius r
sometimes the k nearest-neighbors
sometimes just 1 neighbor

query point can be in D, e.g. in clustering, dimension reduction, or not (e.g. retrieval, image
completion)
n� 106 and d > 102

Brute force (suppose we need neighbors of all xi ∈ D)

compute time O(n2d) – Too large!

Can we do it exactly in subquadratic time? Probably NO
[if the SETH (Strong Exponential Time Conjecture) holds]

Rephrased problem: find approximate nearest neighbors
e.g. if x has neighbor x′ ∈ D at distance r , return an x′′ ∈ D at distance ≤ cr
with c > 1 some constant, and w.h.p.1, usually measured by a confidence δ
we measure performance of algorithm as function of (c, r , δ)

1with high probability
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Distance functions

Distance and similarity functions

Distances
Euclidean x , x ′ ∈ Rd , dEuclid (x , x ′) = ‖x − x ′‖ =

√
xT x + (x ′)T x ′ − 2xT x ′

L1 (Manhattan) x , x ′ ∈ Rd dL1(x , x ′) = ‖x − x ′‖1

Hamming x , x ′ ∈ {0, 1}d dH(x , x ′) = xT x + (x ′)T x ′ − 2xT x ′ = #x + #x ′ − 2#(x ∩ x ′)

Similarities

cosine x , x ′ ∈ Rd or {0, 1}d cos(x , x ′) =
xT x ′√

(xT x)((x ′)T x ′)

Jaccard x , x ′ ∈ {0, 1}d J(x , x ′) =
#(x ∩ x ′)

#(x ∪ x ′)
=

xT x ′

xT x + (x ′)T x ′ − xT x ′

Note that if x , x ′ ∈ {0, 1}d they can be seen as indicator functions for subsets of 1 : n.
Hence xT x ′ = #(x ∩ x ′) represents the cardinality of the intersection of sets given by x , x ′

All distances above are metrics.
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Locality Sensitive Hashing Hash functions and hash tables

Hash functions and hash codes

Let the data space be Rd , and assume some fixed probability measure on this space.

A family of hash functions is a set H = {h : Rd → {0, 1} } with the following properties
1 For each h, Pr [h(x) = 1] ≈ 1

2
2 The binary random variables defined by the functions in H are mutually independent. (Or, if H is

not finite, a “not too large” random sample of such random variables is mutually independent.)

Let h1:k be a mutually independent subset of H. We call

g(x) = [h1(x) h2(x) . . . hk (x)] ∈ {0, 1}k (1)

the hash code of x .
Note that the codes g(x) are (approximately) uniformly distributed; the probability of any
g ∈ {0, 1}k is about 1

2k
.

Useful hash functions must be fast to compute.
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Locality Sensitive Hashing Hash functions and hash tables

Hash tables

A hash table T is a data structure in which points in Rd can be stored in such a way that
1 All points with the same code g are in the same bin denoted by Tg . The table need not use space

for empty bins.
2 Given any value g ∈ {0, 1}k , we can obtain a point in Tg or find if Tg = ∅ in constant time

(independent of the number of points n stored in T ).
Some versions of hash tables return all points in Tg , e.g., as a list, in constant time.

3 It is usually assumed that storing a point x with given code g(x) in a hash table is also constant time.

Hence, using a hash table to store an x or to retrieve something, involves computing k hash
functions, then a constant-time access to T .
When x ′ 6= x and g(x ′) = g(x) we call this a collision. In some applications (not of interest
to us), collisions are to be avoided.

Marina Meila (UW) III NN in High Dimensions CSE 547/STAT 548 Winter 2022 11 / 43



Locality Sensitive Hashing What is Locality Sensitive Hashing

Hashing vs. Locality Sensitive Hashing (LSH)

by Ben Coleman randorithms.com
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Locality Sensitive Hashing What is Locality Sensitive Hashing

Locality Sensitive Hash Functions and Codes

A hash function h is locality sensitive iff for any x , x ′ ∈ Rd

Pr [h(x) = h(x ′)] ≥ p1 when ||x − x ′|| ≤ r (2)

Pr [h(x) = h(x ′)] ≤ p2 when ||x − x ′|| ≥ cr (3)

with p1, p2, r and c > 1 fixed parameters (of the family H) and p1 > p2.
W.l.o.g., we set p1 = pρ2 for some ρ < 1.

by Ben Coleman randorithms.com
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Locality Sensitive Hashing What is Locality Sensitive Hashing

LSH functions

A locality sensitive h makes a weak distinction between points that are close in space vs.
points that are far away. A hash code g from locality sensitive hash functions sharpens this
distinction, in the sense that the probability of far away points colliding can be made
arbitrarily small.

pbad = Pr [g(x) = g(x ′) | ||x − x ′|| > cr ] ≤ pk2 (4)

Assume x is not in T ; for any x ′ ∈ D which is far from x ,the probability that x ′ collides with
x is ≤ pbad .
We construct T so that pbad ≤ 1

n
for n the sample size. For this we need Exercise (in

Homework 1)

k =
ln n

− ln p2
⇒ pbad ≤

1

n
(5)

Suppose x ′ ∈ T is “close” to x . What is the probability that g(x ′) = g(x)?

pgood = pk1 = pρk2 =
1

nρ
(6)

This is the probability that the bin Tg(x) contains x ′.

h depends on the distance d
h and g sometimes depend on r
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Locality Sensitive Hashing LSH functions from random projections

How to find good hash functions?

We need large families of h functions
that are easy to generate randomly
and fast to compute for a given x

Generic method to obtain them: random projections
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Locality Sensitive Hashing LSH functions from random projections

LSH function for Hamming distance

H = {hj = bitj (x), j = 1 : d}
a random h ∈ H samples a random bit of x
Collision probability

p1(x , x ′) = 1−
dH(x , x ′)

d
(7)

by Ben Coleman

randorithms.com
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Locality Sensitive Hashing LSH functions from random projections

LSH function for Euclidean and L1 distance

project x on a random line, round to
multiples of r

hw,b(x) = b
wT x + b

r
c (8)

If w ∼ Normal(0, Id ), hash function for
Euclidean distance
If w ∼ Cauchy(0, 1)d , hash function for L1
distance
Collision probability (p = 2 for Normal,
p = 1 for Cauchy)

p1(x , x ′) = deterministic function of‖x−x ′‖p
(9)

Hash function space Hr is infinite, and
depends on r

by Ben Coleman

randorithms.com
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Locality Sensitive Hashing LSH functions from random projections

Analysis of projection on a random vector

Data are x ∈ Rd as usual.
Define hw,b : Rd → Z by

hw,b(x) = b
wT x + b

r
c (10)

with r > 0 a width parameter, w ∈ Rd , b ∈ [0, r).
Intuitively, x is ”projected” on w2, then the result is quantized into bins of width r , with a
grid origin given by b.

The family of hash functions is Hr = {hw,b, w ∈ Rd , b ∈ [0, r)}.
Sampling Hr : w ∼ Normal(0, Id ), b ∼ uniform[0, r).

Because the Normal distribution is a stable distribution, this ensures that wT x is distributed as
Normal(0, ||x||2). Exercise Verify this

Hence wT x − wT x′ is distributed as Normal(0, ||x − x′||2). Exercise Verify this
Moreover, if hash functions are sampled independently from Hr ,(and nothing is known about x)
then hw,b(x), hw′,b′ (x) are independent random variables. Exercise Prove this

2w is not necessarily unit length
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Locality Sensitive Hashing LSH functions from random projections

LSH function for angles

project x on a random line, take the sign

hw,b(x) = sign(wT x) (11)

Collision probability

p1(x , x ′) = 1−
θ(x , x ′)

π
(12)

Hash function space H is infinite by Ben Coleman

randorithms.com

by Ben Coleman randorithms.com
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Locality Sensitive Hashing LSH functions from random projections

Clustering LSH

H = {h =
k(x), for some clustering of data}
h takes values in 1 : K
This is a data dependent hash function
family
Clustering can be K-means, min-diameter,
hieararchical . . .
No theoretical guarantees, but works well in
practice

by Ben Coleman

randorithms.com
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Locality Sensitive Hashing Approximate r -neighbor retrival by LSH

Approximate r -neighbor retrival by LSH

Input D set of n points, L mutually independent hash codes g1:L of dimension k.
Indexing Construct L hash tables T 1:L, each storing D.
Retrieval Given x

1 compute g(x)
2 for j = 1, 2, . . . L

if the bin T j
g(x)
6= ∅

1 return some (all) x′ from it.
2 stop if a single neighbor is wanted.

Some analysis. We set L = nρ

Indexing time ∝ knρ+1

Retrieval time ∝ knρ

Space used ∝ knρ+1

For each x ′ ∈ D close to x , the probability that x ′ is NOT returned for any j ∈ 1 : L is

(1−
1

nρ
)n
ρ
≈

1

e
(13)

This can be made arbitrarily small by multiplying L with a constant.
For each x ′ ∈ D far from x , the probability that x ′ is NOT returned for any j ∈ 1 : L is

(1−
1

N
)n
ρ
≈
(

1

e

)1/n1−ρ

≈
1

e0
= 1 (14)

Hence, we are almost sure not to return a far point, and have a significant probability to
return a close point when one exists, if no points neither far nor close are in the data. This is
why this algorithm is approximate: it may also return points with r < ||x ′ − x || ≤ cr .Marina Meila (UW) III NN in High Dimensions CSE 547/STAT 548 Winter 2022 21 / 43



K-D trees, Ball trees etc.

Heuristics for neighbors in high-dimensions

typically a form of hierarchical clustering
K-D tree for low dimensions (but observed
to work well in high dimensions too)
Ball tree for high dimensions
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K-D trees, Ball trees etc.

K-D Tree
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K-D trees, Ball trees etc.

Ball Tree
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K-D trees, Ball trees etc.

Ball Tree
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K-D trees, Ball trees etc.

K-D Tree construction

node k:

bmin
1:d , bmax

1:d min, max of box in each dimension

jmax,∆max = argmax,maxj{bmax
j − bmin

j , j = 1 : d} the largest dimension of the box
nk , x̄k , . . . number of points in node, mean, other statistics
if k is leaf then Dk an array of the data under this node
pointers pk , lk , rk to parent and children nodes

Algorithm Split-Node(k)

It is assumed that k is leaf, hence lk , rk =null
1 Create new leaf nodes lk , rk children of k and set k as their parent
2 Let b∗ = (bmax

jmax
+ bmin

jmax
)/2

3 Create empty sets Dlk ,Drk
4 For i = 1 : nk

if xi,jmax < b∗ then move xi from Dk to Dlk
; else move xi to Drk

update nlk , nrk and the other statistics as needed

update bmax,min
lk ,rk

5 Update ∆lk ,max, jlk ,max and ∆rk ,max, jrk ,max
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K-D trees, Ball trees etc.

Searching for r -neighbors with K-D Tree

Denote by Nodek the d-dimensional box [bmin
1 , bmax

1 ]× . . . [bmin
d , bmax

d ]
When is Br (x) ∩ Nodek 6= ∅?

x close to a corner: closest corner is c = [min{|bmin
j − xj |, |bmax

j − xj |}]j=1:d

x is interior or close to a face: xj ∈ [bmin
j , bmax

j ] if j 6= j0, and xj ∈ [bmin
j − r , bmax

j + r ] for j = j0

When is Nodek ⊂ Br (x)?

furthest corner is c′ = [max{|bmin
j − xj |, |bmax

j − xj |}]j=1:d

if ‖x − c′‖ ≤ r then all Nodek ⊂ Br (x)

Retrieving all points in D ∩ Br (x)

Recursively from the root, examine Nodek
If Br (x) ∩ Nodek = ∅, return with no output
Else
If Nodek ⊂ Br (x) output all Dk and return
Else examine children of k
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Finding similar documents
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Finding similar documents Min-Hash

Min-Hash – Motivation

Denote S = { space of k-shingles (k-grams) }
|S| = |alphabet|k HUGE!

document → c ∈ {0, 1}|S| sparse!

Similarity( document, document’ ) = J(c, c ′) Jaccard

J(c, c ′) =
#(c ∩ c ′)

#(c ∪ c ′)

Wanted compress c → x , so that

x ∈ ZL
+ with L� |S|

Jaccard is preserved (approximately), i.e.

J(c, c′) ≈
#{xl = x′l }

L
(15)

(fraction of equal elements in signatures approximates Jaccard)
x is called signature of c

How? Min-Hash
Why not random bit hashing?
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Finding similar documents Min-Hash

Min-Hash high-level summary

Choose a family of hash functions H = {hπ}
where π are permutatons of S
hπ(c) ∈ {0, 1, . . . |S| − 1}
hπ(c) = number 0’s at the beginning of π(c) = location of 1st 1 in π(c) (zero-indexed)

so that
Pr [hπ(c) = hπ(c ′)] = J(c, c ′) for all π, c, c ′(Min-Hash Property)

Choose L random permutations π1:L

Map c vectors to x by
x(c) = [hπ1 (c), hπ2 (c), . . . hπL (c)]

Approximate J(c, c ′) by averaging

J(c, c ′) =
1

L

L∑
l=1

1[xl=x′
l

]
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Finding similar documents Min-Hash
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Finding similar documents Min-Hash

Finding similar documents: Summary

Input Documents = lists of characters, length large, n large
Shingling documents → binary vectors

k-shingle space S large, c representation high-dimensional
Min-Hash Binary vector c → signature x , dim(x) = L� dim(c)

preserves Jaccard similarity
LSH on signatures x

find neighbors in sub-quadratic time
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