Lecture IV – Mining data streams

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

CSE 547/STAT 548 Winter 2022

Marina Meila (UW)

イロン イ団 とく ヨン イヨン

CSE 547/STAT 548 Winter 2022

2

1/

Data Streams

In many data mining situations, we do not know the entire data set in advance

Stream Management is important when the input rate is controlled externally:

- Google queries
- Twitter or Facebook status updates
- We can think of the data as infinite and non-stationary (the distribution changes over time)

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

イヨト イモト イモト

4

3/

Side note: SGD is a Streaming Alg.

- Stochastic Gradient Descent (SGD) is an example of a stream algorithm
- In Machine Learning we call this: Online Learning
 - Allows for modeling problems where we have a continuous stream of data
 - We want an algorithm to learn from it and slowly adapt to the changes in data
- Idea: Do slow updates to the model
 - SGD (SVM, Perceptron) makes small updates
 - So: First train the classifier on training data.
 - Then: For every example from the stream, we slightly update the model (using small learning rate)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

General Stream Processing Model

Marina Meila (UW)

IV Streaming

CSE 547/STAT 548 Winter 2022

5 /

Problems on data streams

- Subsampling
- Maintaining a random sample: Reservoir sampling
- Counting over sliding windows (number of type x keys over last k items)
- Counting distinct elements Flajolet-Martin
- Filtering a stream Bloom filter
- Finding frequent elements
- Computing moments of count data AMS method

3

6/

イロン イ団 とく ヨン イヨン

Applications (1)

Mining query streams

 Google wants to know what queries are more frequent today than yesterday

Mining click streams

 Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

Mining social network news feeds

E.g., look for trending topics on Twitter, Facebook

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

CSE 547/STAT 548 Winter 2022

Applications (2)

Sensor Networks

Many sensors feeding into a central controller

Telephone call records

- Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
 - Gather information for optimal routing
 - Detect denial-of-service attacks

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

8/

Sampling from a data stream

- Sample a fixed proportion p of elements (e.g. p = 1/10)
 - Hashing!
- Maintain a sample of fixed size s (Reservoir sampling)

3

9/

イロト イヨト イヨト イヨト

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single days
 - Have space to store 1/10th of query stream
- Naïve solution:
 - Generate a random integer in [0..9] for each query
 - Store the query if the integer is 0, otherwise discard

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

10

Problem with Naïve Approach

- Simple question: What fraction of queries by an average search engine user are duplicates?
 - Suppose each user issues x queries once and d queries twice (total of x+2d queries)
 - Correct answer: d/(x+d)
 - Proposed solution: We keep 10% of the queries
 - Sample will contain x/10 of the singleton queries and 2d/10 of the duplicate queries at least once
 - But only d/100 pairs of duplicates
 - d/100 = 1/10 · 1/10 · d
 - Of d "duplicates" 18d/100 appear exactly once
 - 2d/10 2d/100 = 18d/100

So the sample-based answer is $\frac{\frac{d}{100}}{\frac{x}{10} + \frac{18d}{100} + \frac{d}{100}} = \frac{d}{10x + 19d}$

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

11

Solution: Sample Users

Solution:

- Pick 1/10th of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

12

Generalized Solution

Stream of tuples with keys:

- Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
- Choice of key depends on application

• To get a sample of *a/b* fraction of the stream:

- Hash each tuple's key uniformly into b buckets
- Pick the tuple if its hash value is at most a

Hash table with **b** buckets, pick the tuple if its hash value is at most **a**. **How to generate a 30% sample?**

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

16

13

Maintaining a sample of fixed size

- Sample S of size |S| = s
- Fill with first s items, then randomly replace an existing item with the current item
- Problem: how to maintain a uniform sample?

E 99€

ヘロト ヘロト ヘヨト ヘヨト

Maintaining a sample of fixed size

Maintaining a sample of fixed size

- Sample S of size |S| = s
- Fill with first s items, then randomly replace an existing item with the current item
- Problem: how to maintain a uniform sample?

Uniform in streaming context

At time step $n \ge s$ for each $x \in S$, $Pr[x \in S] = \frac{s}{n}$.

Example s = 2, stream $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, ...$ at step n = 5, each of $x_{1:5}$ is included in S w.p. 2/5

イロト イヨト イヨト イヨト

Reservoir sampling

$\label{eq:algorithm} Algorithm \ {\rm Reservoir \ sampling}$

Reservoir sampling

Algorithm RESERVOIR SAMPLING

- For n = 1 : s fill S with x_{1:s}
 For n > s, w.p. s/n keep item x_n select uniformly at random an item j in S and replace it with x_n
- Proof by induction
 - $n = s, x_{1:s} \in S$ w.p. 1
 - Assume now Uniform sampling property true for step $n \ge s$
 - Prove it for step n+1
- x_{n+1} is kept w.p. $\frac{s+1}{n+1}$

CSE 547/STAT 548 Winter 2022

э

15

Reservoir sampling

Algorithm RESERVOIR SAMPLING

- For n = 1: s fill S with x_{1:s}
 For n > s, w.p. s/n keep item x_n select uniformly at random an item j in S and replace it with x_n
 Proof by induction

 n = s, x_{1:s} ∈ S w.p. 1
 Assume now Uniform sampling property true for step n ≥ s
- Prove it for step n + 1 x_{n+1} is kept w.p. $\frac{s+1}{n+1} \checkmark$
- $x_j \in S$ replaced w.p. 1/s, hence staying w.p. $d\frac{s}{s+1}$ if x_{n+1} kept, and w.p. 1 otherwise
 - $P[x_j \in S \text{ at } n+1 \mid x_j \in S \text{ at } n] = \left(1 \frac{s}{n+1}\right) + \frac{s}{n+1} \frac{s-1}{s} = \frac{n}{n+1}$
 - But $x_j \in S$ w.p. $\frac{s}{n}$ at step *n*, hence

$$P[x_j \in S \text{ at } n+1] = P[x_j \in S \text{ at } n]P[x_j \in S \text{ at } n+1 \mid x_j \in S \text{ at } n]$$
$$= \frac{s}{n} \frac{n}{n+1} = \frac{s}{n+1} \checkmark$$

3

イロト イ団ト イヨト イヨト

- S is set of keys of interest
- |S| = m -large
- Problem Filter from stream the items with keys in S
- Challenge Do it in time < m/item
- First idea hash the keys
- B is hash table of size |B| = n, with n > m
- Initially B filled with 0s
- $h: S \rightarrow 0: n-1$ is hash function

```
Init for s \in S, B[h(s)] \leftarrow 1 (Preprocess)
```

```
Run for a \in stream (Stream)

• if B[h(a)] = 1 output a
```

¹For simplicity, we write $a \in S$ when we mean key $(a) \in S$.

- S is set of keys of interest
- |S| = m -large
- Problem Filter from stream the items with keys in S
- Challenge Do it in time < m/item
- First idea hash the keys
- B is hash table of size |B| = n, with n > m
- Initially B filled with 0s
- $h: S \rightarrow 0: n-1$ is hash function

```
Init for s \in S, B[h(s)] \leftarrow 1 (Preprocess)
```

```
Run for a \in stream (Stream)
```

```
• if B[h(a)] = 1 output a
```

```
• Analysis<sup>1</sup>
```

• False negatives (not outputting $a \in S$): never

16

イロト イボト イヨト イヨト

¹For simplicity, we write $a \in S$ when we mean key $(a) \in S$.

- S is set of keys of interest
- |S| = m -large
- Problem Filter from stream the items with keys in S
- Challenge Do it in time < m/item
- First idea hash the keys
- B is hash table of size |B| = n, with n > m
- Initially B filled with 0s
- $h: S \rightarrow 0: n-1$ is hash function

```
Init for s \in S, B[h(s)] \leftarrow 1 (Preprocess)
```

```
Run for a \in stream (Stream)
```

```
• if B[h(a)] = 1 output a
```

- Analysis¹
- False negatives (not outputting $a \in S$): never
- False positives (outputting $a \notin S$): h[a] = h[s] for some $s \in S$ given $a \notin S$

¹For simplicity, we write $a \in S$ when we mean key $(a) \in S$.

- S is set of keys of interest
- |S| = m -large
- Problem Filter from stream the items with keys in S
- Challenge Do it in time < m/item
- First idea hash the keys
- B is hash table of size |B| = n, with n > m
- Initially B filled with 0s
- $h: S \rightarrow 0: n-1$ is hash function

```
Init for s \in S, B[h(s)] \leftarrow 1 (Preprocess)
```

```
Run for a \in stream (Stream)
```

```
• if B[h(a)] = 1 output a
```

• Analysis¹

- False negatives (not outputting $a \in S$): never
- False positives (outputting $a \notin S$): h[a] = h[s] for some $s \in S$ given $a \notin S$
- What is the probability of this occurrence?

16

¹For simplicity, we write $a \in S$ when we mean key $(a) \in S$.

Probability of a False Positive

- False positives (outputting $a \notin S$): h[a] = h[s] for some $s \in S$ given $a \notin S$
- $h[a] \sim uniform(0: n-1)$ therefore $p_{FP} = #(B_j = 1)/n =$ fraction of occupied entries in table
- ٩
- Remark Hashing the keys is like picking *m* balls from an urn containing *n* balls numbered 0 : *n* 1, with replacement How many distinct numbers we expect?
- Also like throwing *m* darts into *n* targets
- To calculate: $Pr[B_i = 1]$ after all *m* keys are hashed

イロト イヨト イヨト イヨト

CSE 547/STAT 548 Winter 2022

3

17

- We have m draws, n numbers = m darts, n targets
- What is the probability that a number gets picked at least once?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

18

CSE 547/STAT 548 Winter 2022

イロト イヨト イヨト

Marina Meila (UW)

IV Streaming

Bloom Filter – Algorithm

- S is set of keys, B is hash table, |S| = m, |B| = n, with n > m
- Initially B filled with 0s
- $h_{1:k}: S \rightarrow 0: n-1$ are random hash functions

Run for $a \in$ stream (Stream)

- if $B[h_j(a)] = 1$ for all $j \in 1 : k$ output a
- Probability of a False Positive
 - Fraction of B entries set to 1: $1 e^{-km/n}$ (km draws from n numbers)
 - Output a only if we find "1" in k table entries
 - Hence Pr[a False Positive] = $(1 e^{-km/n})^k$

3

19

イロト イヨト イヨト イヨト

Bloom Filter -- Analysis

What fraction of the bit vector B are 1s?

- Throwing k·m darts at n targets
- So fraction of 1s is (1 e^{-km/n})
- But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1

So, false positive probability = (1 - e^{-km/n})^k

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

イロト イヨト イヨト イヨト

Bloom Filter – Analysis (2)

- "Optimal" value of k: n/m ln(2)
 - In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6
 - Error at k = 6: (1 e^{-1/6})² = 0.0235

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

21

Bloom Filter: Wrap-up

 Bloom filters guarantee no false negatives, and use limited memory

- Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized
- Is it better to have 1 big B or k small Bs?
 - It is the same: (1 e^{-km/n})^k vs. (1 e^{-m/(n/k)})^k
 - But keeping 1 big B is simpler

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?
- How many distinct products have we sold in the last week?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

23

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

24

イロト イヨト イヨト イヨト

Flajolet-Martin Approach

 Pick a hash function *h* that maps each of the *N* elements to at least log₂ *N* bits

- For each stream element *a*, let *r(a)* be the number of trailing **0s** in *h(a)*
 - r(a) = position of first 1 counting from the right

E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2

- Record R = the maximum r(a) seen
 - R = max_a r(a), over all the items a seen so far

Estimated number of distinct elements = 2^R

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

25

Marina Meila (UW)

Flajolet-Martin: First intuition

- In base 10: 0,1,2,3,...10,11,.....
 - every 10-th number ends in 0
 - every 100-th number ends in 00
 - . . .
- In base 1: 0,1,10,11,100,101,110,111,1000,...
 - every 2-nd number ends in 0
 - every 4-th number ends in 00
 - every 2^r -th number ends in $\underbrace{0 \dots 0}_{\times r}$ (these are the multiples of 2^r
- Pr[observe a multiple of 2^r]= $\frac{1}{2^r}$
- If multiple of 2^R observed: we must have taken about 2^R distinct samples

イロト イヨト イヨト イヨト

CSE 547/STAT 548 Winter 2022

26

Why It Doesn't Work

E[2^R] is actually infinite

- Probability halves when R → R+1, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value 2^R?
 - Median? All estimates are a power of 2
 - Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Flajolet-Martin: Why not working

ヘロト ヘロト ヘヨト ヘヨト

CSE 547/STAT 548 Winter 2022

э.

28