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Definitions

Definitions – Supervised learning

Data set D = {(x1, y1), . . . (xn, yN)}
Loss function L(y , ŷ) – to be minimized during training
Predictor fθ(x)

Loss on training set (empirical loss) L̂(fθ) = 1
N

∑N
i=1 L(y i , fθ(x i )

We will also talk about
Decision/Regression Tree
Random forest
Logistic regression
Gradient descent/Stochastic Gradient Descent (SGD)
Bias and variance, overfitting, underfitting
(known from STAT 535/CSE 546 or other ML classes)
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Definitions

Stochastic Gradient Descent

Goal: find minimum of function fθ w.r.t θ ∈ Rd

Stochastic Gradient Descent (SGD)
Input
for k = 1, 2, . . .K

1 get dk ∈ Rd direction of descent: dk = ∇fθk +noise
2 get step size ηk > 0
3 update θ:

θk+1 ← θk − ηkdk (1)

Output θK (or better θ̄ average over last steps)

Note

When fθ is L̂(D; θ) an empirical loss function, it is typical to set dk =
∂L(y i ,f

θk
(x i ))

∂θ
If data is streaming, then SGD becomes on-line algorithm (never stops learning θ)
In gradient descent ηk is optimized to approximately maximize the decrease in f (or L)
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Definitions

On-line learning

data streaming, θ changes at each time step
for t = 0, 1, . . .

1 x t arrives
2 predict ŷ t = fθt−1 (x t)
3 observe y t (if y t not observed we would be doing Reinforcement Learning)
4 pay loss L(y t , ŷ t)

5 update θt+1 ← Learning Alg(x t , y t , . . .)
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Definitions

How to measure performance of on-line algorithm?

denote Dt = {(x1:t , y1:t)}
θt∗ is the result of off-line learning θ from Dt .
off-line we can learn at least as well as on-line (from the same data, “by the same
algorithm”/optimizing the same L)
Assume E [L(y t+1, fθt∗ (x t+1)] ≤ E [L(y t+1, fθt (x t+1)]

(instantaneous) regret at time t

r(t) = L(y t+1, fθt (x t+1)− L(y t+1, fθt∗ (x t+1)

Average regret

R(t) =
1

t

t∑
s=1

r(s)

Wanted
Best: R(t)→ 0 for t →∞ asymptotically we are doing as well as processing all the data at
once
stronger possible too

∑
s=1 tr(t) ≤ M, finite for all t (true for Perceptron algorithm: makes

finite number of mistakes)
Okay: R(t) ≤ ε for t sufficiently large
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[Multiplicative updates algorithms]

Multiplicative updates algorithms

Area developed at the frontier between game theory and computer science, and in machine
learning. For a general and clear discussion of these algorithms see ? “The Multiplicative updates
method”.
Weighted majority We have “experts” b1:M who can predict the stock market (with some error).
The predictions in this problem are binary, i.e {up, down} We want to predict the stock market by

combining their predictions in the function f =
∑k wkbk . The following algorithm learns f by

optimizing the weights wk .

Weighted Majority Algorithm
Initialize w0

i ← 1
for t = 1, 2, . . .

1 w t
i ← w t−1

i (1− ε) if expert i makes a mistake at time t
2 predict the outcome that agrees with the weighted majority of the experts

It can be shown that the number of mistakes mt of f up to time t is bounded by

mt ≤
2 lnM

ε
+ 2(1 + ε)mt

j (2)

where mt
j is the number of mistakes of any expert j . Thus, asymptotically, the number of

mistakes of the algorithm is about twice those of the best expert.
For a more general algorithm, that includes the above case, ? prove that to achieve a tolerance δ
w.r.t to the optimal average loss, one needs to make O(lnM/δ2) updates.
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[Multiplicative updates algorithms]

Feasibility problem for LP, with oracle

The problem is to find a point x ∈ Rn satisfying M linear constraints given by

Ax ≥ b, A ∈ RM×n, b ∈ RM (3)

The oracle is a blackbox which, given a single constraint cT x ≥ d returns a point x satisfying it
whenever the constraint is feasible. It is assumed that the oracle’s responses x satisfy
Aix − bi ∈ [−ρ, ρ] for all rows i of A and that ρ is known.

Linear Program with Oracle parameters ρ, δ
Initialize wi = 1/M the weight of each constraint
for t = 1, 2, . . .T

1 Call Oracle with c =
∑

i wiAi , d =
∑

i wib
i and obtain x t

2 Penalty for equation i is r ti = Aix
t − bi

3 Update weights by

w t+1
i ← w t

i (1− ε · sgnr ti )|r
t
i | (4)

with ε = δ
4ρ

and renormalize the weights.

Output x =
∑

t x
t/T

The number of steps T ∝ ρ2.
In ? it is shown (Exercise prove it based on the initial assumptions!) that (1) if Oracle returns a
feasible x t at all steps, then x satisfies Aix − b + δ ≥ 0 i.e the system is satisfied with tolerance δ;
(2) if Oracle declares infeasibility in some step, then the program is infeasible.
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Boosting There is more than one way to average predictors

There is more than one way to average predictors

Classification will be the running exaple here, but most results hold for other prediction problems
as well.
Denote B = {b} a base classifier family
Averaging:

f (x) =
M∑
k=1

βkbk (x) (5)

f is real-valued even if the bk ’s are ±1 valued
Why average predictors?

to reduce bias

to compensate for local optima (a form of bias)

to reduce variance

if b1, b2, . . . bM make independent errors, averaging reduces expected error (loss). We say
that b1 and b2 make independent errors ⇔ P(b1 wrong | x) = P(b1 wrong | x , b2 wrong)

because the bk functions are given: real world domain experts (weather prediction), a set of
black-box classifiers (from a software package), a set of [expert designed] features (speech
recognition, car/human recognition) each of them weakly informative of y

because B is a set of (simple) “basis functions” and we need a more complex predictor in our
task
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Boosting There is more than one way to average predictors

Averaging is not always the same thing

Depending how we choose B, b1, b2, . . . bM and β1, β2, . . . βM , we can obtain very different
effects.
We will examine

Bayesian averaging (briefly)
Mixtures of experts (briefly)
Bagging (briefly)
Backfitting (briefly)
Stacking (briefly))
Boosting
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Boosting Bayesian averaging

Bayesian averaging

Assume any predictor b ∈ B could be the “true” predictor with some prior probability P0(b).
Learning means changing the probability distribution of b after seeing the data.

Before seeing data P0(b) prior probability of b
After seeing D P(b|D) posterior probability of b

Bayes formula P(b|D) = P0(b)P(D|b)∑
b′∈B P0(b′)P(D|b′)

Classification of a new instance by Bayesian averaging:

f (x) =

∫
B
b(x)dP(b|D)

or

P(y |x ,D) =

∫
B

1b(x)=ydP(b|D)

Hence classifiers (or more generally predictors) are weighted by their posterior probability.
Intuition: The likelihood becomes more concentrated when N increases
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Boosting Bayesian averaging

Bayesian averaging and model complexity

model too simple: likelihood low, prior high
model about right: likelihood high, prior
not too low
model too complex: likelihood high, prior
very low

Bayesian averaging in practice.

P̂(bk |D) =
P0(bk )P(D|bk )∑M

k′=1 P0(bk′ )P(D|bk′ )
≡ βk

b1:M are either sampled from B, or trained separately (e.g local minima of L̂, models of different
complexities)
Priors in practice

non-informative
complexity penalizing, sparsity inducing, etc
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Boosting Bagging

Reducing variance: Bagging

What if we had several (independently sampled) trainig sets D1,D2, . . .DM?

we could train classifiers {b1, b2, . . . bM} on the respective D1,D2, . . .DM

we could estimate EP(b)[b] ∼ f = 1
M

∑M
k=1 b

k

f has always lower variance than bk

Idea of bagging: sample D1,D2, . . .DM from the given D and estimate bk on Dk

f (x) = sgn
1

M

M∑
k=1

bk (x)

Thus, bagging is a form of boostrap.
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Boosting Bagging

sample N′ ≤ N samples × M times
D1 D2 D3

Resulting “bagged” classifier F = 1
3

(b1 + b2 + b3)

Marina Meila (UW) V Boosting, Multiplicative updates CSE 547/STAT 548 Winter 2022 14 / 43



Boosting Bagging

Bagging reduces variances

It was shown theoretically and empirically that bagging reduces variance.
Bagging is good for

base classifiers with high variance (complex)

unstable classifiers (decision trees, decision lists, neural networks)

noisy data

Example

Random Forests A large ensemble of decision trees is fitted to the same data set, introducing
randomness in various ways, such as (1) resampling the data set, (2) taking random splits, with
probabilities that favor “good” splits, etc. The output predictor is the (unweighted) average of all
the trees.

can be extended to more than classification (regression, feature selection)
training can be done in parallel
computing f (x) on new example is fast enough
VERY POPULAR in industry
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Boosting Stacking

Stacking

very general method (any kind of predictors or costs)
for complex base classifiers

1 Fit predictors b1, . . . bM to the data D. The predictors can be from different model classes
(i.e neural networks, CART, nearest neighbors, logistic regressions) or use different sets of
features.
For k = 1 : M, for data point i = 1 : N

train bk
−i from the model class of bk on D \ {(x i , y i )}

2 Fit coefficients β1:M by minimizing the leave-one-out (loo) empirical cost L̂loo

L̂loo(β1:M =
1

N

N∑
i=1

L(y i ,

M∑
k=1

βkb
k
−i (x

i )) (6)

(or by cross-validation).

Note that if L is a non-linear function, the minimization in (??) is a non-linear minimization, and
in particular for convex losses this is a convex optimization problem in β1:M .
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Boosting Mixtures of Experts

Mixtures of Experts

Here βk = βk (x), and
∑

k β
k (x) = 1 for all x in the domain of the inputs.

Idea each bk is an “expert” in one region of the input space.
Wanted f ≈ bk (x) in the region of expertise of expert bk

The vector function β(x) = [β1(x) . . . βM(x)] is sometimes called the gating function.

Example

Suppose the true function to learn is f ∗(x) = |x |, x ∈ R. This can be well approximated by two
linear experts f 1(x) = x , f 2(x) = −x with weights β1 = φ(x), β1 = φ(−x), where φ is the
sigmoid function (hence β1 + β2 = 1 everywhere.

The example highlights that, by using a mixture of experts we can construct a more complex
classifier by from simple classifiers (linear). “Simple” can mean easy to fit, or low complexity (aka
simple decision region), or both. The effective sample size for each bk is smaller than N, and
corresponds to the data for which βk (x i ) is away from 0.
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Boosting Mixtures of Experts

For more than two experts, a natural gating function is the softmax function

βk (x) =
ev

T
k x∑M

l=1 e
vT
l
x

with vl ∈ Rn a vector of parameters (7)

Training By descent methods. Often the experts f 1:M and gating functions β1:M are trained
simultaneously (to maximize log-likelihood) by steepest descent, or EM algorithm (which we’ll
study later).
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Boosting Forward Fitting and Backfitting

Forward Fitting and Backfitting

(bk , βk ) are fitted iteratively (sequentially), one k at a time.
In some cases, the weights βk can be absorbed into bk .
f t is f at iteration t The residual r ∈ RN is defined as r t(x i ) = y i − f t(x i ).

ForwardFitting Algorithm
Input M, labeled training set D

Initialize f = 0
repeat

for k = 1, 2, . . .M

fit k-th predictor βk , bk = argminL̂(f + βb)
update f = f + bkβk

until change in L̂ small enough (or, change in bk small enough)

Output f (x) =
∑M

k=1 β
kbk (x)

Note that M does not have to be set in advance.
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Boosting Forward Fitting and Backfitting

Backfitting

Set M at the beginning, and cycle through the M predictors, updating predictor k while keeping
the others fixed. Denote by

f −k (x) =
∑
l 6=k

βkbk (x) (8)

the combined predictor f “minus” the k-th base predictor bk .

BackFitting Algorithm
Input M, labeled training set D

Initialize b1:M = 0, [β1:M = 0 if there are coefficients β]
repeat

for k = 1, 2, . . .M
calculate rk (x i ) = y i − f −k (x i ), i = 1 : N

optimize L̂ w.r.t k-th base predictor βk , bk = argminL̂(rk + βb)

until change in L̂ small enough (or, change in b1:M small enough)

Output f (x) =
∑M

k=1 β
kbk (x)

Often these

methods are used when bk are assumed to be simple, weak, and the predictor f is built from the
cooperation of several b’s. Thus, they are generally bias reduction method.
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Boosting Forward Fitting and Backfitting

Example

Least squares regression In this problem, it is useful to denote

rk (x i ) = y i − f −k (x i ) (9)

the residual of f −k at data point x i . Then, LLS (y i , f (x i )) = y i − f −k (x i )− βkbk (x i ). Hence,

optimizing L̂LS w.r.t. βk , bk can be expressed as

βk , bk = argmin
β,b

N∑
i=1

(r i − βb(x i ))2 . (10)

In other words, each step of backfitting is a least squares regression problem, where the output
variable values y i are replaced with the current residuals r i .

See also Additive Models

Marina Meila (UW) V Boosting, Multiplicative updates CSE 547/STAT 548 Winter 2022 21 / 43



Boosting AdaBoost

Reducing bias: Boosting

Base classifier family B has large bias (e.g. linear classifier, decision stumps) but learning always
produces b that is better (on the training set) than random guessing.
Preconditions for boosting

1 Learning algorithm accepts weighted data sets. Training minimizes

L̂w01(b) =
N∑
i=1

wiL01(y i , b(x i )) with
N∑
i=1

wi = 1.

2 B is a weak classifier family. For any D and any weights w1:N there can be found b ∈ B such
that the training error of b on D is bounded below one half.

0 < L̂w01(b) ≤ δ <
1

2

Idea of boosting: train a classifier b1 on D, then train a b2 to correct the errors of b1, then b3 to
correct the errors of b2, etc.
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Boosting AdaBoost

Example

Boosting with stumps
Stumps are decision trees with a single split.
(below, c1 . . . c4 denote the coefficients β1:4).
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Boosting AdaBoost

AdaBoost Algorithm

AdaBoost Algorithm
Assume B contains functions b taking values in [−1, 1] or {±1}

Input M, labeled training set D
Initialize f = 0

w1
i = 1

N
weight of datapoint xi

for k = 1, 2, . . .M
1. “learn classifier for D with weights wk” ⇒ bk

2. compute error εk =
∑N

i=1 w
k
i

1−yi b
k (xi )

2

3. set βk = 1
2

ln 1−εk
εk

4. compute new weights wk+1
i = 1

Zk w
k
i e
−βk yi b

k (xi ) where Z k is

the normalization constant that makes
∑

i w
k+1
i = 1

Output f (x) =
∑M

k=1 β
kbk (x)
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Boosting AdaBoost

Remarks

1 If b(x) ∈ {±1} then y ib(x i ) ∈ {±1}, and 1−y i b(x i )
2

= 1 if an error occurs and 0 otherwise.

Thus, εk in step 2 adds up the weights of the errors.
If b(x) ∈ [−1, 1] then the errors contribute different amounts to the loss depending on their
margin.

2 In both cases, εk ∈ [0, δ], δ < 0.5 by the weak learner property of B
3 βk > 0 whenever εk < 1/2.
4 If b ∈ {±1}, then step 4 can be written equivalently (up to a multiplicative constant)

wk+1
i =

{
1
Zk w

k
i if bk (xi ) = yi

1
Zk w

k
i e

2βk
if bk (xi ) 6= yi

(11)

This form corresponds to the DiscreteAdaBoost algorithm, the first AdaBoost algorithm
published, which assumed b(x) ∈ {±1}. As we shall see later, modern boosting algorithms
dispense with the assumption b ∈ [−1, 1] too.
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Boosting AdaBoost

An interpretation of the weights

wk+1
i =

1

N

∏
k′≤k

e−β
k′ yi b

k′ (xi )

Zk′
=

e−yi f
k (xi )

N
∏

k′≤k Z
k

(12)

weight of example i at step k is proportional to e−yi f
k−1(xi ) the exponential of its negative

margin
Examples that have been hard to classify get exponentially high weights.
Examples that are classified with high margins get vanishingly small weights.
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Boosting AdaBoost

The normalization constant is an average loss

If we sum both sides of (??) over i we obtain

1 =

∑
i e
−yi f

k (xi )

N
∏

k′≤k Z
k
, (13)

or ∏
k′≤k

Z k =

∑
i e
−yi f

k (xi )

N
≡ L̂φ(f k ) (14)

where
φ(z) = e−z . (15)

and
Lφ(y , f (x)) = φ(yf (x)) (16)

Hence, the r.h.s of (??) is the average over the data set of the exponential loss Lφ.

The function φ decreases with the margin, thus decreasing L̂φ will produce a better classifier (on
the training set). In this sense, Lφ is an alternative loss function for classification.
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Boosting AdaBoost

L̂φ decreases exponentially with M

For simplicity, we show this in the special case b(x) ∈ {±1} for all b ∈ B.

Z k =
n∑

i=1

wk
i e
−βk (yi b

k (xi )) (17)

= eβ
k ∑
i=err

wk
i︸ ︷︷ ︸

εk

+e−β
k ∑
i=corr

wk
i︸ ︷︷ ︸

1−εk

(18)

= eβ
k
εk + (1− εk )e−β

k
(19)

=

√
1− εk

εk
εk +

√
εk

1− εk
(1− εk ) = 2

√
(1− εk )εk ≤ γ (20)

where γ < 1 depends on δ the maximum error. It follows that

L̂φ(f k ) =
k∏

k=1

Z k′ ≤ γk (21)
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Boosting AdaBoost

The training set error L̂01 decreases exponentially with M

Note that φ(z) ≥ 1z<0 for all z (see also figure ??). Therefore

L̂(f k ) =
1

N

N∑
i=1

1[yi f
k (xi )<0] (22)

≤
1

N

N∑
i=1

e−yi f
k (xi ) = L̂φ(f k ) ≤ γk (23)

In other words, the training error L̂(f k ) is bounded by a decaying exponential. Moreover, since

L̂(f k ) ∈ {0, 1/N, 2/N, . . . 1}, it follows that after a finite number of steps, when γk
0
< 1/N, the

training error will become 0 and the training data will be perfectly classified!
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Boosting AdaBoost

The test set error and overfitting

Do NOT take M = k0. The number of steps M for good generalization error is often much
larger than k0 (and sometimes smaller).

Below is a typical plot of L̂ and L (which can be estimated from an independent sample) vs
the number of boosting iterations.
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Boosted predictors are additive models

Boosted predictors are additive models

An additive model (for prediction) has the form

f (x) ≡ E [Y |x] = α+ b1(x1) + b2(x2) + . . .+ bn(xn) (24)

In other words, it is a linear model, where each coordinate has been non-linearly transformed. A
generalization of the above definition, which is still called an additive model, is

f (x) = α+ β1b1(x) + β2b2(x) + . . .+ βMbM(x) (25)

This is a linear model over a set of new features b1:M .

Example (Linear model and neural net)

If bj = xj , j = 1 : n, the model (??) is a linear model.

If bj ∈ { 1

1+e−γT x
, γ ∈ Rn} = B (the family of logistic functions with parameter γ ∈ Rn) then

f (x) is a [two layer] neural network.

Additive Logistic Regression While the predictors above are well suited for regression, for
classification one may employ a logistic regression, i.e

f (x) ≡
P(Y = 1|x)

P(Y = −1|x)
= α+ β1b1(x) + β2b2(x) + . . .+ βMbM(x) (26)

[Generalized Additive Models. Link function. See supplementary notes]
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Boosted predictors are additive models

How to train an Additive Model?

[Alg 9.2 HTF for Additive Logistic Regression]
An additive model for prediction can be trained in several different ways.

Given base family B, data D, loss function L
Fix M from the start and optimize over all the parameters and base functions at once.
Backfitting Fix M from the start but optimize only one bj , βj at a time, keeping the others
fixed
Forward fitting Optimize bk , βk sequentially, for k = 1, 2, . . . without refitting previously fit
base models. In this case, M need not be fixed in advance.
It turns out that this is what boosting does.
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Boosted predictors are additive models AdaBoost is steepest descent on training set

AdaBoost is steepest descent on training set

We will show that boosting is a form of (stochastic) gradient descent on the surrogate loss L̂φ
(we already know from Part I that AdaBoost pushes L̂φ asymptotically towards 0).

Assume we want to minimize the surrogate loss L̂φ on the training set. For any finite D, f and

b ∈ B affect L̂φ only via the N-dimensional vectors of their values on D (which we will abusively
denote by f , b)

f =


f (x1)
f (x2)
. . .

f (xN)

 b =


b(x1)
b(x2)
. . .

b(xN)

 (27)

Thus, L̂φ(f ) is a function of N variables, with partial derivatives

∂L̂φ

∂f (x i )
=

∂

∂f (x i )

[
1

N

N∑
i=1

φ(y i f (x i ))

]
=

1

N
y iφ′(y i f (x i )) = −

1

N
y ie−y i f (x i ), (28)

since φ′(z) = −e−z . Imagine a boosting step as trying to find a change βb in f which minimizes

the loss L̂φ(f + βb). This minimization is equivalent to maximizing the decrease in loss

L̂φ(f )− L̂φ(f + βb).
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Boosted predictors are additive models AdaBoost is steepest descent on training set

The direction of descent

The change in Lφ along “direction” b with step size β is approximately

L̂φ(f )− L̂φ(f +βb) ≈ −
(
∇fL̂φ(f )

)T
(βb) =

∑
i

[(
1

N
y ie−y i f (x i )

)
(βb(x i ))

]
∝
∑
i

y ib(x i )wi (29)

(denoting/recalling wi ∝ e−yi f (x i )).
The direction of steepest descent b is therefore the maximizer of

argmax
b∈B

∑
i

wiyib(x i ) (30)

where in the sum on the r.h.s we recognize the r of AdaBoost.

If b(x i ) = ±1 values, then 1− yib(x i ) = 1[i error ], and maximizing (??) is the same as

minimizing the weighted training error L̂w01.
If b takes real values, then yib(x i ) is the margin of example i , and maximizing (??) is a
natural objectiv for many training algorithm. Exercise Can you find examples of

algorithms/predictors which do/don’t maximize the loss in (??)?

More generally (we will use this later), the direction b maximizes∑
i

yib(x i )[−φ′(yi f (x i ))] (31)

Finding the direction b is equivalent with step 1 of the AdaBoost algorithm, training a weak
classifier on the weighted data. The resulting b can be seen as the best approximate of the
gradient of Lφ in B.
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The line minimization

Now let us do line minimization: find the optimal step size β in direction b. For this we take the
derivative of L̂φ(f + βb) w.r.t β and set it to 0.

dL̂φ(f + βb)

dβ
=
∑
i

yib(x i )φ′(yi f (x i )) = −
∑
i

yib(x i )e−yi f (x i )−βyi b(x i ) (32)

β is the (unique) root of ∑
i

wiyib(x i )e−βyi b(x i ) = 0 (33)

If • b(x) ∈ {−1, 1} then line optimization gives βk from AdaBoost
• b(x) ∈ [−1, 1] then line optimization gives βk from AdaBoost approximately
• b(x) ∈ (−∞,∞) then β amounts to a rescaling of b and is redundant.

Marina Meila (UW) V Boosting, Multiplicative updates CSE 547/STAT 548 Winter 2022 35 / 43



Boosted predictors are additive models AdaBoost is steepest descent on training set

Calculating βk for binary b’s

Assume b(x) ∈ {±1}.
In this case y ib(x i ) = ±1 and we obtain

dL̂φ(f + βb)

dβ
=

∑
i corr

wie
−β −

∑
i err

wie
β = 0 (34)

0 = (1−
∑
i err

wi )− (
∑
i err

wi )︸ ︷︷ ︸
εk

e2β (35)

β =
1

2
ln

1− εk

εk
(36)

This is the βk coefficient of step 4 of AdaBoost

Hence, the AdaBoost algorithm can be seen as minimizing the loss Lφ(f ) by steepest descent in
the function space spanB.
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RealAdaBoost

The third case corresponds to the RealAdaBoost in the FHT variant, described here for
completeness
Real AdaBoost Algorithm (in the FHT variant)

Assume B contains real-valued functions
Input M, labeled training set D

Initialize f = 0
w1
i = 1

N
weight of datapoint x i

for k = 1, 2, . . .M
“learn classifier for D with weights wk ⇒ bk”

compute new weights wk+1
i = wk

i e
−y i bk (x i ) and normalize them to sum to 1

Output f (x) =
∑M

k=1 b
k (x)
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A statistical view of boosting

It has been shown ? (FHT) that boosting can also be seen as noisy gradient descent in function
space when we replace the finite training set with the true data distribution. The loss function
and gradient can be given a probabilistic interpretation. This point of view is useful in two ways:

1 It shows that boosting is asymptotically minimizing a reasonable loss function, so that we
can expect the performace/and algorithm behavior on finite samples to be a good predictor
on its behaviour with much larger samples.

2 It is an interpretation that allows on to create a very large variety of boosting algorithms, like
the LogitBost, Gentle AdaBoost and GradientBoost, presented hereafter.

Assume

we do boosting “at the distribution level”, i.e using PXY instead of the empirical distribution
given by D.
The loss function is Lφ(f ) = E [e−yf (x)].
The notation E [] denotes expectation w.r.t the joint PXY distribution.
learning a classifier means “find the best possible minimizer to Lφ(f )”
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Is Lφ a good loss?

Denote px = PXY (y = 1|x). The loss Lφ(f ) is minimized by

f ∗(x) =
1

2
ln

PXY (y = 1|x)

PXY (y = −1|x)
=

1

2
ln

px

1− px

And px = ef (x)

ef (x)+e−f (x) the logistic function.

Exercise Does the expresion of px look familiar? What is the connection?

Proof Since we are minimizing over all possible f ’s with no restrictions, we can minimize
separately for every f (x). Hence, let x be fixed

EPY |X=x
[e−yf (x)] = P(y = 1|x)e−f (x) + P(y = −1|x)ef (x)

and the gradient is

∂E [e−yf (x)|x]

∂f (x)
= −P(y = 1|x)e−f (x) + P(y = −1|x)ef (x)

By setting this to 0 the result follows. �

In summary f ∗ is the Bayes optimal predictor for Lφ. But by the Proposition, f ∗ is also Bayes
optimal for L01. (Good!)
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Steepest descent on Lφ(f ) is (like) RealAdaboost

The Real AdaBoost (with “learn a classifier” defined at the distribution level) fits an additive
logistic regression model f by iterative descent on Lφ(f ).

Proof The proof is similar to that for the training set case.
Suppose we have a current estimate f (x) and seek to improve it by minimizing Lφ(f + b) over b.
In the proof we assume that b is an arbitrary function, while in practice b will be chosen to best
approximate the ideal f within the class B.
Denote by px = P[y = 1|x] (the true value) and by p̂x the “estimate”

p̂x =
ef (x)

ef (x) + e−f (x)
(37)

Assume again x is fixed. Then,

Lφ(f + b) = E [e−yf (x)−yb(x)]

= e−f (x)e−b(x)px + (1− px )ef (x)eb(x)

Taking the derivative and setting it to 0 we obtain the new step:

b(x) =
1

2
ln

pxe−f (x)

(1− px )ef (x)
=

1

2

[
ln

px

1− px
− ln

p̂x

1− p̂x

]
(38)

Note that if one could exactly obtain the b prescribed by (??) the iteration would not be
necessary.
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(Proof, continued)
More interesting than the exact form of b above is the optimization problem that leads to it.
Denote w(x , y) = e−yf (x). Then, b is the solution of

b = argmin
b∈B

EPXY w(X ,Y )[e−Yb] (39)

where PXYw(X ,Y ) denotes the (unnormalized) twisted distribution obtained by multiplying the
original data distribution with w(x , y). (Of course, one may have to put some restrictions on PXY

and B in order to obtain a proper distribution.) Finally, note that the new f is f + b and the new
weights are w(x , y)e−yb(x) which finishes the proof.
Hence, the Real AdaBoost algorithm can be seen as a form of “noisy gradient” algorithm at
the distribution level. (Note that the minimization in equation (??) is over both direction and
scale of f .)
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Why the e−yf loss? and other Lφ losss

We saw that Lφ is statistically motivated. Now we will see that it is computationally
motivated as well.
Recall: The “true” classification loss L01 is nonsmooth (has 0/no derivatives), non-convex.
For training, one uses surrogate losses of the form Lφ(y , f ) = φ(yf ).
Want the following properties for φ

φ(z) is an upper bound of the 0–1 loss
φ(z) is smooth (has continuous derivatives of any order if f has them); (this lets us use continuous
optimization techniques to fit the classifier)
φ(z) is convex (this leads to global optimization, which has been recognized as beneficial in practice;
it also allows to prove bounds, rates of convergence and so on)
φ(z) is monothone (decreasing) (thus, when z > 0, driving the margins to increase even if the
classification is correct).

These properties are satisfied by φ(z) = e−z
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Surrogate losses and boosting algorithms

A cornucopia of loss functions

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

yF

C
os

t

0−1 cost
exp(−yF)
−log(likelihood)

(yF−1)2

(sometimes good to have L(z) decrease for all z < 0,

and sometimes bad – causes overfitting)

. . . and of boosting algorithms

GentleAdaBoost: approx Newton,
φ = e−z

Least-SquaresBoost: φ = (1− z)2

many operations in closed form
LogitBoost φ = ln(1 + e−z )
slower (almost linear) decrease for z � 0
AnyBoost, GradientBoost work with
any φ
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GradientBoost

GradientBoost Algorithm
Given B contains real-valued functions, loss Lφ, φ differentiable
Input M, labeled training set D

Initialize f 0(x) = β0 = argminβ∈R L̂(β)
for k = 0, 1, 2, . . .M − 1

1. compute ri = −y iφ′(y i f (x i ))
2. fit bk (x) to outputs ri
3. find βk = argminβ∈R L̂(f k + βbk ) (univariate optimization)

update f k+1(x) = f k (x) + βkbk (x)

Ouput f M(x)

Can be used for either classification or regression
Works with any L
If L convex, step 3 is convex optimization (efficient)
Proposed first as AnyBoost, later specialized for B =decision/regression trees, with other
tweaks and new name GradientBoost
When B =CART

step 3 optimizes over every leaf separately
depth of trees J represents maximum number of interactions in f ; should not be too large (B must
be weak)
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Practical aspects

Overfitting in noise When the classes overlap much (many examples in D hard/impossible to
classify correctly) boosting algorithms tend to focus too much on the hard examples, at the
expense of overall classification accuracy. The same happens for outliers. Observe also that the
loss function(s) in the previous figure, which penalize more as the margin becomes more negative.
Choice of features Often times, the base class B consists of function of the form b(x) = xj − a,
which perform a split on coordinate xj at point xj = a. They have the advantage that they can
be learned and evaluated extremely fast. One can also augment the coordinate vector x with
functions of the coordinates (e.g. x → [ x1 . . . xd x1x2 x1x3 . . . ]) essentially creating a large set
of features, which corresponds to finite but very large B. In such a situation, the number of
features d can easily be larger than M the number of b’s in the final f . Thus, boosting will be
implicitly performing a feature selection task.
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