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What is manifold learning good for?
g8
© Manifolds, Coordinate Charts and Smooth Embeddings

© Non-linear dimension reduction algorithms
@ Local PCA
o PCA, Kernel PCA, MDS recap
@ Principal Curves and Surfaces (PCS)
o Embedding algorithms

@ Metric preserving manifold learning — Riemannian manifolds basics
@ Metric Manifold Learning — Intuition
@ Mathematical defihitons
@ Estimating the Riemannian metric

© Choice of neighborhood radius
@ What graph? Radius-neighbors vs. k nearest-neighbors
@ What neighborhood radius/kernel bandwidth?
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What is manifold learning good for?

Who needs manifold learning?

o What is PCA good for?
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Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

@ Preprocessed by Jacob VanderPlas and Grace Telford
@ n = 675,000 spectra x D = 3750 dimensions

4000 5000 6000 7000 8000 9000
Wavelength (Angstroms)
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Molecular configurations

aspirin molecule o Data from Molecular Dynamics (MD) simulations of small

molecules by [Chmiela et al. 2016]
n ~ 200, 000 configurations x D ~ 20 — 60 dimensions

aspirin3,3 vs 8.2

stable meta-stable

transition
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What is manifold learning good for?

When to do (non-linear) dimension reduction

@ n = 698 gray images of faces in
D = 64 x 64 dimensions

o head moves up/down and
right/left

o With only two degrees of
freedom, the faces define a 2D
manifold in the space of all
64 X 64 gray images
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Manifolds, Coordinate Charts and Smooth Embeddings

Manifold. Mathematical definitions

Definition 1 (Smooth Manifold (?))

o A d-dimensional manifold M is a topological (Hausdorff) space such that every point has a
neighborhood homeomorphic to an open subset of RY.

@ A coordinate chart (U, x) of manifold M is an open set U C M together with a
homeomorphism x : U — V of U onto an open subset V C R? = {(x!,...,x9) € R9}.

o A C®-atlas A is a collection of charts, A = U,e/{(Ua, xa)} where I is an index set, such
that M = UyeUq and for any a, B € | the corresponding transition map
Xg © ot Xa(Ua N Ug) — R is continuously differentiable any number of times.

o Notation: p€ U — x(p) = (x*(p), ..., x4(p)).

@ The mappings {x} are not uniquely defined. This is a problem for comparing results of
manifold estimation algorithms

@ Generally, a manifold needs more than one chart. This is not a severe problem, and can be
circumvented as we will see next. For simplicity, we will talk only about a single chart from
now on.
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Manifolds, Coordinate Charts and Smooth Embeddings

Intrinsic dimension. Tangent subspace

d is called intrinsic dimension of M

If the original data p € RP, call D the ambient dimension.

Denote by ¢ : V C RY — U C M the inverse of x. A smooth curve v on M is defined as
the image by ¢ of a smooth curve 5 in V. A smooth curve admits a tangent at every interior
point.

The tangent subspace of M at p € M, denoted 7, M is defined as the set of all tangents
at p to smooth curves curves on M that pass through point p.

dim7,M = d
If f: M — R is a scalar function on M, then its gradient at p, denoted Vf(p), is a vector
in TpM.
exterior derivative
geodesic distance

coordinate
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Manifolds, Coordinate Charts and Smooth Embeddings

Tangents to curves — detail

The Chain Rule f = hog & f(x) =
where f : (—=1,1) - U C RP, g : (-1 1)
VCRI, h:V U

Where 4 € RO, 4g € RY, dh = [22 =1 |
the Jacoblan of h

(Smooth) Curve ¥ : (—1,1) — R? iff
¥ :(—1,1) — R are smooth functions,
for j =1:d. 3(t) is point on curve at
t.

i=1:D0 'S

@ Smooth curve on M: v = ¢ o7, v(t)

@ Hence ‘3? =d¢- d”’

Marina Meil3 (Statistics)

= 6(7(2), ..

Manifold Learning Intro

7))

January 2022

9/71



Manifolds, Coordinate Charts and Smooth Embeddings

An example |

e M is unit sphere in R3, coordinatex x, y, z
e U is top patch of M. How to map U to V C R??
@ We find the inverse mapping ¢ : V — U
@ Let V be a the interior of a circle, coordinates (x*, x?) , point (0,0,1) € U maps to (0.0) € V.
@ Let r?> = (x1)2 + (x?)2, and map it to the arc distance from (0,0, 1) to p = (x, y, z). Then
x = xtsinr
y = x%sinr
z =1—cosr

@ Let's compute the derivatives (by chain rule)

or xt ox . (><1)2
3= —1:5mr+ cosr
Ox r ox r
or x2 ox x1x?
= —_— = cos r
Ox? r Ox? r
Oz Xt oy x1x?
—— = —sinr — = cos r
ox1 r Ox1 r
oz X% Oy . (x%)?
ﬁ:—smr ﬁ:smr+ cosr
X r X
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Manifolds, Coordinate Charts and Smooth Embeddings

An example |l

o Now let 7 : (—¢,€) — V be the curve 7(t) = [t t]T. Hence % =[11]7
@ The tangent vector in p = (0,0,1) is Z—Z(0,0) = d¢2—? with coordinates

12, 1.2
dvy sinr + (Xz)z% cos r
CT(Ov 0)= sinr+ Mcosr (2)
t H )<1+)<2 ’
sinr

r
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Manifolds, Coordinate Charts and Smooth Embeddings

Examples of manifolds and coordinate charts

Not manifolds

o dimension not constant

unions of manifolds that intersect
sharp corners (non-smooth)
many/most neural network embeddings
manifolds can have border
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Manifolds, Coordinate Charts and Smooth Embeddings
Embeddings

@ One can circumvent using multiple charts by mapping the data into m > d dimensions.

e Let M, N be two manifolds, and f : M — A be a C* (i.e smooth) map between them.
Then, at each point p € M, the Jacobian df, of f at p defines a linear mapping between
TpM, and the tangent subspace to A at f(p) T¢(pN.

Definition 2 (Rank of a Smooth Map)

A smooth map f : M — N has rank k if the Jacobian df, : TpM — T, N of the map has rank
k for all points p € M. Then we write rank (f) = k.

4
Definition 3 (Embedding)
Let M and N be smooth manifolds and let f : M — A be a smooth injective map, that is
rank(f) = dim(M), then f is called an immersion. If M is homeomorphic to its image under f,
then f is an embedding of M into NV. )

@ Whitney's Embedding Theorem (?) states that any d-dimensional smooth manifold can be
embedded into R29.

@ Hence, if d < D, very significant dimension reductions can be achieved with a single map
f: M—RM

o Manifold learning algorithms aim to construct maps f like the above from finite data
sampled from M.
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Non-linear dimension reduction algorithms

Non-linear dimension reduction: Three principles

O Local (weighted) PCA (IPCA)

@ Principal Curves and Surfaces (PCS)

© Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian
Eigenmaps,...)

Q@ [Other, heuristic] t-SNE, UMAP, LLE

In all cases, given D = {&1,...&m} C M, want to “recover’ M of arbitrary shape. What makes
the problem hard?
o Intrinsic dimension d
e must be estimated (we assume we know it)
o sample complexity is exponential in d — NONPARAMETRIC
non-uniform sampling
volume of M (we assume volume finite; larger volume requires more samples)
injectivity radius/reach of M
curvature

o ESSENTIAL smoothness parameter: the neighborhood radius (see next)
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Non-linear dimension reduction algorithms

Neighborhood graphs

o All ML algorithms start with a neighborhood graph over the data points

o In the radius-neighbor graph, the neighbors of &; are the points within distance r from &;,
i.e. in the ball B,(&;).

°

In the k-nearest-neighbor (k-nn) graph, they are the k nearest-neighbors of ¢;.
@ neigh; denotes the neighbors of &;, and k; = | neigh; |.

0= = [5,-/]"/6”@1" € RP*ki contains the coordinates of ¢;’s neighbors
@ k-nn graph has many computational advantages
o constant degree k (or k — 1)

e connected for any k > 1
e more software available

but much more difficult to use for consistent estimation of manifolds (see later, and )

X
&,...60 C RP
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Non-linear dimension reduction algorithms Local PCA
Local PCA

Idea Approximate M with tangent subspaces at a finite number of data points
@ Pick a point & € D

@ Find neigh;, perform PCA on neigh; U{¢;} and obtain (affine) subspace with basis T; € RP*9
© Represent {i € neigh; by y; = Projr, {ir

vy = T, (& — &) new coordinates of & in T¢, M 3)

Repeat for a sample of n’ < n data points

SRR
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Non-linear dimension reduction algorithms ERCIEIN{@TN

Local PCA

o For n, n’ sufficiently large, M can be approximated with arbitrary accuracy

So, are we done? Some issues with IPCA

Point &; may be represented in multiple T;'s (minor)

New coordinates y; are relative to local T;

Fine for local operations like regression

Cumbersome for larger scale operations like following a curve on M
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PCA in two ways

Principal Component Analysis

e Data matrix X = (D X n) each column a data vector
o XXT is covariance matrix (unnormalized; must be centered!)
e SVD(X,d) = UZVT keep only d principal eigenvectors, and d largest e-values
U = d x D basis vectors
Y = UTX =XVT = d x n low dimensional representation of data
UUT X =reconstruction of X (D dimensional, rank d)
e Encoding a new x € RP: y = UTx
PCA Dual algorithm

more efficient when D > n

Compute X7 X = K Gram matrix (or kernel matrix)

EIG(K,d) = VZ2VT keep only d principal eigenvectors, and largest d e-values

Y = =YV7T = d x n low dimensional representation of data (U not computed
unless we want to reconstruct x data)
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Non-linear dimension reduction algorithms IS CIGE N @. W VIDENIeT)

Kernel PCA
o Kernel PCA
@ when data x mapped to high-dimensional feature space ®(X)
o (®(x),d(x")) = r(x,x") (positive definite) kernel
o Gram matrix (Kernel matrix) K « [r(x;, %) ;i
o k(x, x’) is tractable to compute

(Ex: Gaussian kernel k(x, x’) = exp(—||x — x'||?/h?))
Dual PCA = Y =X VT = d x n (tractable!)
What if data in ® space not centered?

The Centering Matrix H
1
H=1- —1nxn
n

Substracts the mean of a vector

Properties of H: H symmetric, H2 = H, H1 =0, Ha = a. (centered vector), HXT = XCT

(centers all columns of XT)
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2022-03-21

Kernel PCA

Manifold Learning Intro
Non-linear dimension reduction algorithms
I—PCA, Kernel PCA, MDS recap
I—Kernel PCA

Exercise 1
Properties of the centering matrix H Let a € R" be a vector, pu, the mean of the elements of a,

ac = a— palp  the centered vector a. (4)

Prove that a. H is symmetric, and idempotent H> = H.

b. H1=0

c. Ha = a.

d. Show that H has an eigenvalue o1 = 0. What is the e-vector for 017

e. The eigenvalues of H are o1 = 0, 02., = 1. Characterize the e-vector space for o.p.

f. Let X € R"*P a matrix with rows equal to data points in D dimensions. Prove that X. = HX
is a matrix whose rows (as data points) have 0 mean.

g Let K = XXT be a kernel matrix, and e = XCXCT4 Prove that K. = HKH.




PGA Kerre!|RCA) MDS recap
Multi-dimensional scaling (MDS)

@ Problem Given matrix of (squared) distances D € R"*", find a set of n points in d
dimensions Y = d X n so that

Dy = [llyi — yIl’lij = D

o Useful when
e original points are not vectors but we can compute distances (e.g string edit distances, philogenetic
distances)
o original points are in high dimensions
e original distances are geodesic distances on a manifold M
o Optimization problem miny cgaxn [|D — Dy||%
@ Solution
@ Relation with Gram matrix (of centered data): K. = —1/2HDHT where H is the centering matrix!
@ Hence, optimization equivalent to miny _paxn Z,-j(li(x,-, X)) = v yj)?
© This is the same as rank d approximation to K!
MDS has same solution Y as PCA if D contains Euclidean distances
o Algorithm summary: Calculate K = —1/2HDHT, compute its d principal e-vectors/values,
Y =X V7 as before

Q: Could MDS be an embedding algorithm? What is different about MDS and upcoming
algorithms?
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Manifold Learning Intro
Non-linear dimension reduction algorithms
I_PCA, Kernel PCA, MDS recap
I—Multi—dimensional scaling (MDS)

Exercise 2

MDS and Kernel PCA Prove that K. = —%HDH.




Principal Curves and Surfaces (PCS)
Principal Curves and Surfaces (PCS)

77

o Elegant algorithm , most useful for d = 1 (curves)
o Efficient version by ?
@ Also works in noise ??

o data in RP near a curve (or set of curves)

— T EEEEEEE A e ey



ONCHRMEETRC T MBI L IEECIGE INEI  Principal Curves and Surfaces (PCS)

What is a density ridge

Peak Saddle

|

—

‘s“‘////
o Vp =0 inspan{va.p}
Vé’ =0 Vé) =0 vj e-vector for \j, j=1:D
Vep <0 Vephas A1 >0, Ao.p <0 Vzphas)\2.D<O

In other words, on a ridge

@ Vp o v; direction of least negative curvature (LNC)
@ Vp,v; are tangent to the ridge
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Gradient and Hessian for Gaussian KDE

o Data &;., € RP
Let p be the kernel density estimator with some kernel width h.

PO = g () = hdzexp( EZE8) o (%)

We prefer to work with In p which has the same critical points/ridges as p
Vinp= lVp =g
Vzlnp— ——Vpr +1 V2p =H
—£:)?
Vp(€) = -k S, — (6~ s;)/hz exp (— 1555 ) Jwq hence
—_———

uj

_ 1 . (3] €=y _ 1
50 = 55 |~ Lo (-5 )/Zexp( E235)| = e mio

wi

(6)

o Mean-shift appears|

o H(&) = X7 wiuu] —g(€)g(€)” — !
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SCMS Algorithm

SCMS = Subspace Constrained Mean Shift

Init any x! Density estimated by p =data * Gaussian kernel of width h
for k=1,2,...
@ calculate g¥ o« V In p(x¥) by Mean-Shift O(nD )
Q H* =V?Inp(xH) O(nD?)
© compute v; principal e-vector of H¥ O(D?)
Q X x4 ProjvlL g~ O(D)

until convergence

@ Algorithm SCMS finds 1 point on ridge; n restarts to cover all density

o Run time o nD? /iteration
o Storage x D?
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ONCHRMEETRC T MBI L IEECIGE INEI  Principal Curves and Surfaces (PCS)

Principal curves found by SCMS

Y
e

~--SCMS -*-SCMS
LBFGS (NL 'D', m=5) LBFGS (NL | 1=5)

LBFGS=accelerated, approximate SCMS — coming next!
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Accelerating SCMS

@ reduce dependency on n per iteration
e ignore points far away from £
e use approximate nearest neighbors (clustering, KD-trees,. ..
o reduce number of SCMS runs: start only from n’ < n points
@ reduce number iterations: track ridge instead of cold restarts
e project Vp on v; instead of vlJ‘
e tracking ends at critical point (peak or saddle)
o reduce dependence on D

e approximate v; without computing whole H
o D? < mD with m =5
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Piiip=] Guvis e Sz (PES)
(Approximate) SCMS step without computing Hessian

e Given g & Vp(x)

e Wanted Projv# g=(-wvv)g

@ Need vy
principal e-vector of H = V?(In p) for \; = largest e-value of H
without computing/storing H
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Piiip=] Guvis e Sz (PES)
(Approximate) SCMS step without Hessian

o Wanted
v1 principal e-vector of H = —V2(In p) for A1 = smallest e-value of H

o First Idea
@ use LBFGSS to approximate H~! by H=1 of rank 2m [Nocedal & Wright ]

@ Run time oc Dm + m? / iteration (instead of nD?)
Storage oc 2mD for {x<~/ —xk~I=1y Ly gkl ghololy
@ Problem v; too inaccurate to detect stopping

@ Second idea

@ store {x* ' — X"} LU g T i =V
e span V approximates principal subspace of H
@ minimize v Hv sit. v € span V' where H is exact Hessian

o Possible because H = 5 W,-u,-ul.T —gg’ — 1712/ with wy.p, u1., computed during Mean-Shift

e Run time oc n’Dm + m? / iteration (instead of nD?)
Storage < 2mD
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2022-03-21

Manifold Learning Intro
Non-linear dimension reduction algorithms
I—Principal Curves and Surfaces (PCS)
I—(Approximate) SCMS step without Hessian

Exercise 3

Subspace constrained principal e-vector Let H € RPXD pe a symmetric matrix, and V € RESE
an orthogonal matrix defining a subspace. We want to obtain

argmax v Hv  the principal e-vector constrained to V. ()

vEspan V, ||v||=1

a. Prove that v can be obtained by calculating the principal e-vector of a symmetric m X m matrix
W. Hint: v = Vu with u € R™ for any v € span V.
b. What is W for the Hessian H used in SCMS? and what is the dimension of W in this case?

v




ONCHRMEETRC T MBI L IEECIGE INEI  Principal Curves and Surfaces (PCS)
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Embedding algorithms

o Map D to R® where s > d (global coordinates)
e Can also map a local neighborhood U C D to RY (local, intrinsic coordinates)

Input

@ embedding dimension m
neighborhood radius ¢

o neighborhood graph, i.e. {neigh;, =;, for i =1:n}, A=[||§; — §|l]7;_; distance matrix
Ajj = oo if i € neigh;
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Non-linear dimension reduction algorithms [EIZNSSCRTEENFEORTe

The Isomap algorithm

Isomap Algorithm [Tennenbaum, deSilva & Langford 00]

Input A, dimension d
© Find all shortest path distances in neighborhood graph A;; <« graph distance between i, j
@ Construct matrix of squared distances

M = [(Aj)?]

© use Multi-Dimensional Scaling MDS(M, d) to obtain d dimensional coordinates Y for D
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Embedding algorithms
The Diffusion Maps (DM)/ Laplacian Eigenmaps (LE) Algorithm

Diffusion Maps Algorithm

Input distance matrix A € R"%" | bandwidth €, embedding dimension s
© Compute Laplacian L € R"X"
@ Compute eigenvectors of L for smallest s + 1 eigenvalues [¢g @1 ... ¢ps] € RXS
@ ¢y is constant and not informative
o These are the slow modes of the system

The embedding coordinates of p;. are (¢j1, .. - Pis)

o Embedding dimension s = number of eigenvectors
o Intrinsic dimension d < s effective number of degrees of freedeom
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Non-linear dimension reduction algorithms [EIZNSSCRTEENFEORTe

UMAP: Uniform Manifold Approximation and Projection [Mclnnes, Healy,
Melville,2018]

Input kK number nearest neighbors, d,
Find k-nearest neighbors
Construct (asymmetric) similarities w;;, so that >°; w; = logy k. W = [w;].
Symmetrize S = W + WT — W.x W7 is similarity matrix.
Initialize embedding ¢ by LAPLACIANEIGENMAPS.
Optimize embedding.
Iteratively for njie, steps

@ Sample an edge ij with probability oc exp —dj;

@ Move ¢; towards ¢;

© Sample a random j uniformly

@ Move ¢; away from ¢/

Stochastic approximate logistic regression of ||¢; — ¢;|| on dj.

Output ¢

[N =N - =N =}
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Non-linear dimension reduction algorithms [EIZNSSCRTEENFEORTe

Isomap vs. Diffusion Maps

Isomap DiffusionMap
@ Preserves geodesic distances o Distorts geodesic distances
o but only when M is flat and “data” convex ° Computes only distances to nearest
o Computes all-pairs shortest paths O(n?) neighbors O(n'*)
@ Stores/processes dense matrix

o Stores/processes sparse matrix

o t-SNE, UMAP visualization algorithms
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Non-linear dimension reduction algorithms [EIZNSSCRTEENFEORTe

The (renormalized) Laplacian

Laplacian

00600 O

Input distance matris A € R"X", bandwidth ¢

1. 112
Compute similarity matrix Sj; = exp [—M}
First normalization d; = 3°7_; Sy, L = L;/did;
Second normalization df =377 ; L, Py = Lj/d]
L=3%(-P)
Output L, df

Laplacian L central to understanding the manifold geometry
limp,— oo L = Apq [Coifman,Lafon 2006]

Renormalization trick cancels effects of (non-uniform) sampling density [Coifman & Lafon 06]
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2022-03-21

Manifold Learning Intro
Non-linear dimension reduction algorithms

- Embedding algorithms

The (renormalized) Laplacian

Exercise 4

Renormalized Laplacian a. Show that L1y = 0 for the renormalized Laplacian. Hence L always has
a 0 e-value.

4

Exercise 5 (Unnormalized Laplacian)

Let L'" = D — A be the unnormalized Laplacian of graph defined by A. Prove that
xTLU"x = e — xj)? for any x € R".




Non-linear dimension reduction algorithms [EIZNSSCRTEENFEORTe

Embedding algorithms summary

Many different algorithms exist
All start from neighborhood graph and distance matrix A
@ Most use e-vectors of a tranformation of A (preserve the sparsity pattern)

DiffusionMaps — can separate manifold shape from sampling density
LTSA — “correct” at boundaries
Isomap — best for flat manifolds with no holes, small data

@ Most embeddings sensitive to
o choice of radius € (within “correct” range)
e sampling density p
o choice of kernel x, K-nn vs. radius neighbors
i.e. most embeddings introduce distortions!!
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Non-linear dimension reduction algorithms EESRERRIREEEIECIGTIE

Failures vs. distortions

o Distortion vs failure
o ¢ distorts if distances, angles, density not preserved, but ¢ smooth and invertible
o If ¢ does not preserve topology (=preserve neighborhoods), then we call it a failure, for simplicity.
o Examples: points &;, £; are not neighbors in M but are neighbors in ¢(M), or viceversa (hence ¢ is
not invertible, or not continuous)

@ Most common modes of failure

o A does not capture topology
o usually becasuse € too small or too large
o choice of e-vectors
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Non-linear dimension reduction algorithms [T Gl
Artefacts

o Artefacts=features of the embedding that do not exist in the data (clusters, holes, “arms”,
“horseshoes”)

o What to beware of when you compute an embedding

algorithms that claim to choose € automatically

confirming the embedding is “correct” by visualization: tends to over-smooth, i.e. € over-estimated
K-nn (default in sk-1learn!) instead of radius-neighbors: tends to create clusters

large variations in density: subsample data to make it more uniform

“horseshoes”: choose other e-vectors (¢ is almost singulare)

@ Very popular heuristics (no guarantees/artefacts probable): LLE, t-SNE, UMAP, neural
networks
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Manifold Learning Intro
Non-linear dimension reduction algorithms

LEmbedding algorithms

Artefacts

Exercise 6

Independent coordinates and artefacts for long strips, a,b
a. Generate a rectangle with a hole. Generate the following sets of points on 2D grids.

dimension grid spacing  number points
left side 0,1] x [0,1] 0.05 441
middle 1.01, 2] x [0,0.3] 0.01 100 x 31 = 3100
middle 1.01,2] x [0.7,1.] 0.01 100 x 31 = 3100
right side 2.05, 3] x [0, 1] 0.05 420
D 0, 3] x [0, 1] 7081

Plot the data to verify that it is a rectangle with a rectangular hole. The density of the grid is not
uniform. In all plots from here on, color the points by their original y coordinate. Ensure that the
dot size is small enough for clarity (size 1 or less recommended).

b. Let D consist of all the points in a.. Set the kernel width e = 0.05 and the [optional]
neighborhood radius r = 0.15001 (i.e. just over 0.15). Calculate for these data

e A the distance matrix (can be a dense matrix)
e S the similarity matrix (can be a dense matrix)
o L™ =| — D 'S the random walks Laplacian
e L the renormalized Laplacian

Display these matrices as square images with an appropriate color scale (don't forget to show the
scale with each plot).
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Manifold Learning Intro
Non-linear dimension reduction algorithms

I_Embedding algorithms

Artefacts

Exercise 7

Independent coordinates and artefacts for long strips - c,d,e,f

c. Compute ¢o.9 the principal e-vectors 0 : 9 for L and discard ¢ the constant vector. Display ¢1.9
as a pairwise plot. Ensure that the dot size is small enough for clarity (size 1 or less recommended).
d. From the plot in c. choose a pair of coordinates ¢1, ¢x that produces the embedding visually
closest to the original rectangle. While there is some subjectivity in this choice, embeddings that
are “almost dimension 1”, or with self-crossings are NOT close to the original data.

e. Repeat c,d with L™, denoting its e-vectors 1g.9.

f. Embed D with ISOMAP (OK to use outsourced code) and plot the data in the embedding
coordinates y1, y>.
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Embedding in 2 dimensions by different manifold learning algorithms

Original data Laplacian Eigenmaps (LE)
(Swiss Roll with hole)
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Preserving topology vs. preserving (intrinsic) geometry

o Algorithm maps data p € RP — ¢(p) = x € R™

o Mapping M — ¢(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

o Mapping ¢ is isometry

o preserves distances along curves in M, angles, volumes
For most algorithms, in most cases, ¢ is not isometry

Preserves topology Preserves topology + intrinsic geometry
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Theoretical results in isometric embedding

Positive results

General theory

Negative results

Nash’s Theorem: Isometric embedding is possible. @ Obvious negative examples
Diffusion Maps embedding is isometric in the limit @ No affine recovery for normalized Laplacian
[Berard,Besson,Gallot 94],[Portegies:16] algorithms [Goldberg&al 08]
Special cases Empirically, most algorithms
Isomap [Bernstein, Langford, Tennenbaum 03] @ preserve neighborhoods (=topology)
recovers flat manifolds isometrically o distort distances along manifold (=geometry)
LE/DM recover sphere, torus with equal radii @ distortions occur even in the simplest cases
(sampled uniformly) @ distortion persists when n — co

o Follows from consistency of Laplacian @ one cause of distortion is variations in sampling

eigenvectors [Hein & al 07,Coifman & Lafon
06, Singer 06, Ting & al 10, Gine &
Koltchinskii 06]

Marina Meil3 (Statistics)

Manifold Learning Intro

density p; [Coifman& Lafon 06] introduced
Diffusion Maps (DM) to eliminate these
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Metric Manifold Learning

Wanted

eliminate distortions for any “well-behaved” M
and any any “well-behaved” embedding ¢(M)
in a tractable and statistically grounded way

Idea

Given data D C M, some embedding ¢(D) that preserves topology
(true in many cases)

Estimate distortion of ¢ and correct it!
The correction is called the pushforward Riemannian Metric g

Marina Meil3 (Statistics) Manifold Learning Intro January 2022
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Corrections for 3 embeddings of the same data
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Laplacian Eigenmaps
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Definition 4 (Riemannian Metric)

The Riemannian metric g defines an inner product <, >, on the tangent space 7, M for every
p EM. >

Definition 5 (Riemannian Manifold)

A Riemannian manifold (M, g) is a smooth manifold M with a Riemannian metric g defined at
every point p € M. )

e p point on M
@ 7, M = tangent subspace at p
at each p € M, g defines quadratic form G,

<v,w>= vGow forv,w € TpM andfor p € M

e g is symmetric and positive definite tensor field
o g also called first fundamental form

In coordinates at each point p € M, G, is a positive definite matrix of rank d
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All (intrinsic) geometric quantities on M involve g

@ Volume element on manifold
Vol(W) = / N
w
o Length of curve v

Z } dx’ dx/ dt
&gt dr °°

o Under a change of parametrization, g changes in a way that leaves geometric quantities
invariant
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Calculating distances in the manifold M

Original

Laplacian Eigenmaps

true distance d = 1.57

Shortest | Metric Rel.

Embedding [If(p) — f(p")|| Path d error

Original data 1.41 1.57 1.62 3.0%

Isomap m =2 1.66 1.75 1.63 3.7%

LTSAm=2 0.07 0.08 1.65 4.8%

LEm=2 0.08 0.08 1.62 3.1%
curve v = (yo,¥1,-..Yyk) Path in graph

geodesic distance d

Marina Meil3 (Statistics)
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Metric preserving manifold learni INCMELLIERNUERTCIEIECTCI  Mathematical defihitons

G for Sculpture Faces

@ n = 698 gray images of faces in D = 64 X 64 dimensions
@ head moves up/down and right/left
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Problem: Estimate the g associated with ¢

e Given:

o data set D = {py,... pn} sampled from Riemannian manifold (M, g), M C RP

o embedding {y; = ¢(pi), pi € D}
by e.g DiffusionMap, Isomap, LTSA, ...

o Estimate G; € R™X™ the pushforward Riemannian metric at p; € D
in the embedding coordinates ¢

@ The embedding {y1:n, Gi.n} will preserve the geometry of the original data
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Relation between g and A

o A = Laplace-Beltrami operator on M
o A = div - grad

2 =3 2%
°°nC’Af_Eja§JQ

o on weighted graph with similarity matrix S, and t, = >° , S,/ A = diag {t,} — S

A = Laplace-Beltrami operator on M
G Riemannian metric (in coordinates)
o H= G~! matrix inverse

(Differential geometric fact)

0 1 0
Af = \/det(H)zl:— —_— ZH,,(W,: ,

ox! det(H) 4
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Estimation of G~ 1

Let A be the Laplace-Beltrami operator on M, H= G~ 1, and k,/ =1,2,...d.

Ak~ k(P)) (91— PN loyior ) = Hu(P)

Intuition:

A applied to test functions f = ggenteredgeentered

o this produces G1(p) in the given coordinates

@ our algorithm implements matrix version of this operator result

@ consistent estimation of A is well studied [Coifman&Lafon 06,Hein&al 07]
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Estimating the Riemannian metric

Estimation of G !

this formula includes the change of coordinates. first orderder term s cancels because it's applied to
o
Xi*xj
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Metric Manifold Learning algorithm

Given dataset D
@ Preprocessing (construct neighborhood graph, ...)
©® Find an embedding ¢ of D into R™
© Estimate discretized Laplace-Beltrami operator L
Q Estimate Hp, and G, = H}} for all p

@ Fori,j=1:m,
HY = S [L($i * ¢)) — bi * (Lby) — b5 * (Lo )]

where X x Y denotes elementwise product of two vectors X, Y € RN

@ For p € D, H, = [H]]; and prH
Output (¢p, Gp) for all p
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Estimating the Riemannian metric

Algorithm METRICEMBEDDING

Input data D, m embedding dimension, € resolution
@ Construct neighborhood graph p, p’ neighbors iff ||p — p’||? < e
@ Construct similary matrix

1 7112
Sppr = e~ <llP=P'lI” iff p. p’ neighbors, S = [Spp'lp,preD
© Construct (renormalized) Laplacian matrix [Coifman & Lafon 06]

ot p’eDSPp" T = diagt,, p€ D
@S =rT171st!

o i = > pieD Sl T = diagt,,p € D
oP=17T715

@ L=(-P)e
© Embedding [¢p]pep = EMBEDDINGALG(D, m)
© Estimate embedding metric Hp at each point
denote Z= XY, X, Y € RN iff Z; = X;Y; for all i

@ Fori,j=1:m HY = L[L(¢i* ;) — i * (Lo;) — & * (Lei)] (column vector)
@ ForpeD, A, = [Hg]u and H, = ,‘:I;L

Ouput (¢p, Hp)peD
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Estimating the Riemannian metric

This renormalizes the rows of $ to sum to 1.
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Computational cost

n=|D|, D = data dimension,m= embedding dimension
© Neighborhood graph +
@ Similarity matrix O(n?D) (or less)
@ Laplacian O(n?)
O EMBEDDINGALG e.g. O(mn?) (eigenvector calculations)
© Embedding metric

o O(nm?) obtain g~ ! or At
o O(nm®) obtain g or h

Steps 1-3 are part of many embedding algorithms
Steps 3-5 independent of ambient dimension D
Matrix inversion/pseudoinverse can be performed only when needed

Marina Meil3 (Statistics) Manifold Learning Intro January 2022
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Metric Manifold Learning summary

Why useful
Measures local distortion induced by any embedding algorithm

G; = Iy when no distortion at p;

o Estimating distortion

o Correcting distortion
o Integrating with the local volume/length units based on G;

o Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]

o Algorithm independent geometry preserving method
@ Outputs of different algorithms on the same data are comparable

Applications
e Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17] and of intrinsic

dimension d (variant of [Chen,Little,Maggioni,Rosasco ])
@ selecting eigencoordinates [Chen, M NeurlPS19]

January 2022 60/71
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What graph? Radius-neighbors vs. k nearest-neighbors

@ k-nearest neighbors graph: each node has degree k
o radius neighbors graph: p, p’ neighbors iff ||[p — p’|| < r

@ Does it matter?

@ Yes, for estimating the Laplacian and distortion

e Why? [Hein 07, Coifman 06, Ting 10, ...] k-nearest neighbor Laplacians do not converge to
Laplace-Beltrami operator A
o but to A +2V/(log p) - V (bias due to non-uniform sampling)

@ Renormalization of Laplacian also necessary

configurations of ethanol d = 2

K-nearest neighbor  without renormalization

Marina Meil3 (Statistics) Manifold Learning Intro January 2022
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[GUITCREEGITOENERITER  \What neighborhood radius/kernel bandwidth?

Self-consistent method of chosing e

o Every manifold learning algorithm starts with a neighborhood graph
o Parameter ¢

e is neighborhood radius
o and/or kernel banwidth

o For example, we use the kernel
_le=p'11?
K(p,p')=e < if ||p— p'||? < € and 0 otherwise

@ Problem: how to choose €?

Marina Meil3 (Statistics) Manifold Learning Intro
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[@HERIIETGIIGILENELITER  What neighborhood radius/kernel bandwidth?

Existing work

1
@ Theoretical (asymptotic) result /e o< n~ 6 [Singer06]

Visual inspection?
o Cross-validation ?

o only if related to prediction task
heuristic for K-nearest neighbor graph [Chen&Buja09]

o depends on embedding method used
o K-nearest neighbor graph has different convergence properties than e neighborhood

o Geometric Consistency [Perrault-Joncas&Meilal7]
o Computes “isometry” in 2 different ways and minimizes distortion between them

Marina Meil3 (Statistics) Manifold Learning Intro January 2022
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[@HERIIETGIIGILENELITER  What neighborhood radius/kernel bandwidth?

Geometric Consistency: ldea

o |dea: choose € so that geometry encoded by L. is closest to data geometry

I rye e NEEEIII

@ For given € and data point p
@ Project neighbors of p onto tangent subspace
@ this “embedding” is approximately isometric to original data
@ Calculate Laplacian L(€)) and estimate distortion He , at p
@ He p must be = Iy identity matrix

o Completely unsupervised

Marina Meil3 (Statistics) Manifold Learning Intro January 2022 64 /71



[@HERIIETGIIGILENELITER  What neighborhood radius/kernel bandwidth?

The distortion measure

Input: data set D, dimension d’ < d, scale €
@ Estimate Laplacian L(¢) and weights w;(€) with LAPLACIAN
@ Project data on tangent plane at p
o For each p
o Let neigh, . = {p’ € D, ||p’ — pl| < ce} where ¢ € [1,10]
o Calculate (weighted) local PCA (wIPCA) PCA(neigh, ., d’) (with weights w;(e€))
o Calculate coordinates z; in PCA space for points in neighw6
@ Estimate H. , € RY*9" by RMETRIC
o For each p
o Use row p of L
e z;'s play the role of ¢
Q@ Compute quadratic distortion over all p's D(¢) = > cp [|He,p — 1413
Output D(e)

o Select ¢* = argminf D(e) Distorsions versus radii

d’ < d (more robust) —
H more robust than G
@ minimum can be found by O-th order optimization
(faster than grid search)

Distorsion

2 3 4 s 67809 2 3 4
01 1
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[@HERIIETGIIGILENELITER  What neighborhood radius/kernel bandwidth?

Example € and distortion for aspirin

@ Each point = a configuration of the aspirin molecule
@ Cloud of point in D = 47 dimensions embedded in m = 3 dimensions
o (only 1 cluster shown)

Stable state
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[@HERIIETGIIGILENELITER  What neighborhood radius/kernel bandwidth?

Bonus: Intrinsic Dimension Estimation in noise

o Geometric consistency + eigengap method of [Chen,Little, Maggioni,Rosasco,2011]
@ do local PCA for a range of neighborhood radii
@ choose a an appropriate radius € (by Geometric consistency)
© dimension = largest eigengap between A, and A, at radius € (proof by Chen&al)
(“largest” = most frequent largest over a sample)

Distortion vs. € Singular values of IPCA vs. €

distortion
Singular values A

1
2
3
4
—1 5
6
\ / i :
: H — 8
V i N 10 ol
10 10’
H €
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[@HERIIETGIIGILENELITER  What neighborhood radius/kernel bandwidth?

Example: Intrinsic Dimension Estimation results

1 S

10
ke

107
10 7

©
P S e S
g 3 & § 8
g & g g
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